

Cover code

% \usepackage{incgraph}
7% \usetikzlibrary{backgrounds}
\begin{inctext}/
\gtrSymbolsSetCreateSelected{blue}{Male}\gtrSymbolsSetCreateSelected{red}{Female}/
\gtrSymbolsSetCreateSelected{black}{Neuterl}/
\begin{tikzpicture}
\genealogytree [template=symbol nodes,level size=8mm,level distance=6.5mm,
box={title={\gtrnodenumber},height=bmm,attach boxed title to bottom center,
fonttitle=\fontsize{3mm}{3mm}\sffamily,
boxed title style={size=tight,height=3mm,valign=center,left=0.2mm,right=0.2mm}},
tcbset={mytext/.style={notitle,interior style={top color=gtr_Yellow_Frame!50!gtr_Yellow_Back,
bottom color=gtr_Yellow_Frame!50!gtr_Yellow_Back,middle color=gtr_Yellow_Back}}},
add parent=a to fam_a,add parent=b to fam_b,add parent=c to fam_c]
{ child{ gm pf
child{ pm gf cm child{ gm pf cf child{ gm pf cf cm cm child{ gm pf
child{ gm pf cf child{ gm pf cf child{ gm pf child{ gm pf cf cm cm } cf cm c[id=alm } cm
}em}Pecmem } } em } cf cf cf
child{ gm pf cf cm cm child{ gm pf cf cm cm child{ gm pf child{ gm pf cf
child{ gl[box={width=6.5cm,notitle},phantom*]m
child{g[box={width=6.5cm,height=23mm,enlarge top initially by=-15mm,mytext},
no content interpreter]{\Huge\bfseries genealogytree}
child[id=fam_a] {gf cm cf cm
child{ gm pf cf cm child{ gm pf cf child{ gm pf cf cm
child[id=fam_b]{ gm cf cf child{ gm pf cf
child{ gm pf cm cf cf cm cm
child{ gm pf cm child{ gm pf cm cf child{ gm pf child{ gm pf cm cf cm cf }
cm cf cm cf } cm cf } cf cm cf }
child{ gm pf cm cf cm cf }
child[id=fam_c,pivot shift=2cm]{ gldistance=lcm]lm cm child { gm pf cm
child{ gm pf cm cm cf cf cf cm cm cf } cm
child{ gm pf cf cm child{ gm pf cm cm cf cf cf cm cm cf } cm cf }
cf + }}
cmcm }cmem } }emem }ocm } ocm cf cm
} cm cf cf cm cm cm cf }
}em} cf cmem } }
}
} cm cm
child{ gm pf cm cf cm cm cf }
child{ gm pf child{ pm gf child{ gm pf cm cf cm } } cf cm cf cm }
union{ pf cm cm cf
child{ gm pf child{ gm pf cf cm child{ gm pf child{ gm pf
child{ gm pf cf child{ gm pf cf child{ gm pf child{ gm pf
child{ gm pf cf child{ gm pf child{ gm pf cl[id=blf cm cm } cf cm cm
child{ gl[box={width=4cm,notitle},phantom*]m
child{g[box={width=4cm,height=23mm,enlarge top initially by=-15mm,
mytext,capture=minipage,halign=center},no content interpreter]
{\large\bfseries Manual for\\ version\\ \version\\(\datum)}
cm cf cm cm child{ gm cf cm cf cm
child{ glbox={width=4cm,mytext},no content interpreter]{Thomas F.~Sturm} }
clid=clf cm } cf cm }
}remem}cf cmem } cf cmem } cm cm }
cm child{ gm pf ¢f cmcm } cm cm cm } cf cm cm } cf cm cm } cm
} cf cm cm
}
}
}}
\begin{scope}[on background layer]
\node (bg) [fill tile image*={width=4cm}{crinklepaper.png},minimum width=21cm,
minimum height=29.7cm,inner sep=0pt,outer sep=Opt] at (current bounding box) {};
\path[top color=white,bottom color=red,fill opacity=0.25]
(bg.south west) rectangle (bg.north east);
\end{scope}
\end{tikzpicture}
\end{inctext}

The genealogytree package
Manual for version 2.3.0 (2023/03/09)

Thomas F. Sturm!

https://www.ctan.org/pkg/genealogytree
https://github.com/T-F-S/genealogytree

Abstract

Pedigree and genealogy tree diagrams are proven tools to visualize genetic and rela-
tional connections between individuals. The naming for mathematical tree structures
with parent nodes and child nodes is traded from historical family diagrams. How-
ever, even the smallest family entity consisting of two parents and several children is
no mathematical tree but a more general graph.

The genealogytree package provides a set of tools to typeset such genealogy trees
or, more precisely, to typeset a set of special graphs for the description of family-like
structures. The package uses an auto-layout algorithm which can be customized to
e.g. prioritize certain paths.

1 Introduction 9
1.1 Genealogy Trees 9
1.2 Package Design Principles and Philosophy 10
1.3 Comparison with Other Packages 11
1.4 Installation oL Lo 12
1.5 Loading the Package. 12
1.6 Libraries L 13
1.7 How to Get Started 13

2 Tutorials 15
2.1 Tutorial: First Steps (Ancestor Tree) 15

2.1.1 Document Setup 15
2.1.2 Creation of a Basic Ancestor Diagram 16
2.1.3 Applying options 18
2.1.4 Growing the Tree 19
2.1.5 Prioritize and Colorize a Path 22
2.1.6 Changing the Timeflow 24
2.2 Tutorial: Diagram Manipulation by ID values (Descendant Tree) 25
2.2.1 Creation of a Basic Descendant Diagram 25
2.2.2 Growing the Tree 26
2.2.3 Separating Diagram Data and Diagram Drawing 29
2.2.4 Emphasizing a Relationship Path 30
2.2.5 Coloring Subtrees L oo 32
2.3 Tutorial: A Database Family Diagram (Sand Clock) 34
2.3.1 Creation of a Basic Sand Clock Diagram 34
2.3.2 Node Content in Database Format 35

Prof. Dr. Dr. Thomas F. Sturm, Institut fiir Mathematik und Informatik, University of the Bundeswehr
Munich, D-85577 Neubiberg, Germany; email: thomas.sturm@unibw.de

https://www.ctan.org/pkg/genealogytree
https://github.com/T-F-S/genealogytree
mailto:thomas.sturm@unibw.de

2.3.3 Formatting the Node Content 36

234 Adding Images 38
2.3.5 Full Example with Frame 39
2.4 Tutorial: Descendants of the Grandparents (Connecting Trees) 43
2.4.1 Descendants of the Two Grandparents 43
2.4.2 Connected Diagram Lo 44
2.5 Tutorial: Multi-Ancestors 46
2.5.1 Triple Ancestor Example 46
2.5.2 Adding Edges Manually 47
2.5.3 Manual Position Adjustments 48
2.6 Tutorial: Externalization, 49
2.6.1 Externalization Process 49
2.6.2 Document Setup 49
2.6.3 Marking Diagrams for Externalization 50
2.7 Tutorial: Conversion to Pixel Images 52
2.7.1 Command Line Conversion with MuPDF 52
2.7.2 Command Line Conversion with Ghostscript 52
2.7.3 Command Line Conversion with ImageMagick 53
2.7.4 Conversion with the ’standalone’ Package 53
2.7.5 Conversion during Externalization 54
Genealogy Tree Macros 55
3.1 Creating a Genealogy Tree 55
3.2 Using Tree Options i 58
3.3 Accessing Information inside Nodes 59
3.4 Auxiliary Tools L 61
Graph Grammar 63
4.1 Graph Structureo 63
4.2 Subgraph 'parent’ 65
4.3 Subgraph ’child’ 67
4.4 Subgraph 'union’ Lo 69
4.5 Subgraph ’sandclock’” 71
4.6 Node’c 73
4.7 Node D' e e 73
4.8 Node’g' 73
4.9 Data’input’ Lo 74
4.10 Control Sequence ’insert’ L Lo 75
Option Setting 77
5.1 Option Priorities 7
5.1.1 Option Priorities for Nodes 78
5.1.2 Option Priorities for Families 79
5.2 Graph Growth Setting (Time Flow) 80
5.3 Graph Geometry 83
5.4 Identifiers 92
5.5 Node Options e 95
5.6 Family Options. 104
5.7 Subtree Options L 107
5.8 Level Options e 109
5.9 Tree Positioning Options 111
5.10 TikZ and Tcolorbox Options 114

5.11 Ignoring Input
5.12 Imserting Inputo
5.13 Phantom Nodes and Subtrees.
5.14 Childless Families
5.15 Autofill Parent Graphs (Ancestors)
5.16 Special and Auxiliary Options
Node Data (Content) Processing
6.1 Setting a Node Data Processing and Processor
6.2 Predefined Non-Interpreting Processings
6.2.1 fit
6.2.2 tcolorbox
6.2.3 tcbox
6.2.4 tcbox™® ...
6.2.5 tikznode
6.3 Creating a Customized Non-Interpreting Processor
6.4 Content Interpreters
Database Processing
7.1 Database Concept
7.2 Example Settingso
7.3 DataKeys
7.4 Input Format for Dates
7.5 Formatting the Node Data
7.6 Formatting Names
7.7 Formatting Dates
7.8 Formatting Places
7.9 Formatting Events
7.10 Formatting Lists of Events oo
7.11 Formatting Comments L
7.12 Formatting Professions oL
7.13 Formatting Lists of Information
7.14 Formatting Sex e
7.15 Formatting Images
7.16 Formatting Ages L
Edges
8.1 Edge Settings
8.2 Edge Types.
8.3 Edge Parameters Lo
8.4 EdgeLabels
8.5 Edge Labels Database
8.6 Adding and Removing Nodes from Edge Drawing
8.7 Extra Edges e
8.8 Edge Shifting
Genealogy Symbols
9.1 Symbol Color Settings
9.1.1 Global Color Settings,
9.1.2 Local Color Settings
9.2 List of Symbols Lo
9.3 Legend to Symbols.

137
138
139
139
143
146
149
152
154
155

161
162
163
165
172
174
184
186
190
191
193
195
196
197
198
199
201

203
204
208
213
217
219
221
226
231

9.3.1 Printinga Legend oL 243

9.3.2 Description Texts and Language Settings 244

10 Language and Text Settings 247
10.1 Preamble Settingso 247
10.2 Document Settings. Lo 248
11 Debugging: Library 249
11.1 Parser Debugging 249
11.2 Processor Debugging Lo 252
11.3 Graphical Debugging 261
11.4 Show Information L 265
12 Templates: Library 269
12.1 Using Templateso o 269
12.2 Template formal graph’ oo 269
12.3 Template ’signpost’o 270
12.4 Template 'symbol nodes’ 270
12.5 Template 'tiny boxes’ Lo 271
12.6 Template ’tiny circles’o 271
12.7 Template ’directory’ Lo 272
12.8 Template 'database pole” 273
12.9 Template ’database pole reduced’ 275
12.10 Template ’database poleportrait” 276
12.11 Template ’database poleportrait reduced” 278
12.12 Template ’database portrait’ L. 279
12.13 Template ’database portrait reduced” 281
12.14 Template ’database traditional’ 282
12.15 Template ’database traditional reduced” 283
12.16 Template ’database sideways’ 284
12.17 Template ’database sideways reduced’” 286
12.18 Template ’database sidewaysportrait’ 287
12.19 Template ’database sidewaysportrait reduced” 288
12.20 Template ’database relationship” 289
12.21 Template ’ahnentafel 3° 290
12.22 Template ’ahnentafel 4° L Lo o 292
12.23 Template ’ahnentafel 5° Lo L 294
12.24 Template ’adpaper 3’ L 296
12.25 Template ’adpaper 4’ 297
12.26 Template ’adpaper 5’ 298
12.27 Template 'letterpaper 3’o 299
12.28 Template 'letterpaper 4’ 299
12.29 Template ’display 16:9 3* Lo 300
12.30 Template 'display 16:9 4> 301
12.31 Template ’display 16:9 5" Lo 302
12.32 Template 'display 16:10 3>o 303
12.33 Template ’display 16:10 4’ o oo 303
12.34 Template 'display 16:10 5’ 303
12.35 Border Size Options o 304
12.36 Predefined Colors of the Library 306
12.37 Auxiliary Control Sequences 307

13 Fancharts: Library

13.1 Fan Chart Diagrams L oo
13.2 Geometry Options L
13.3 Segment Text Optionso
13.4 Color and Style Options
13.5 Templates e
13.5.1 Template 'spartan’
13.5.2 Template 'malefemale sober”
13.5.3 Template 'malefemale relation’
13.5.4 Template ’colorwheel sober’
13.5.5 Template 'colorwheel serious’
13.5.6 Template 'colorwheel malefemale’
13.5.7 Template 'colorwheel rich”
13.5.8 Template ’colorwheel opulent’
13.5.9 Template 'wave sober’o
13.5.10 Template 'wave serious’”
13.5.11 Template 'wave malefemale’
13.5.12 Template 'wave rich”
13.5.13 Template 'wave opulent”
13.5.14 Template ’radial sober’
13.5.15 Template 'radial serious’
13.5.16 Template 'radial malefemale’
13.5.17 Template ‘radial rich”
13.5.18 Template 'radial opulent’
13.6 Advanced Customization

14 Auto-Layout Algorithm
14.1 Preliminaries L
14.1.1 Aesthetic Properties oL
14.1.2 Genealogy Trees
14.1.3 Graph Grammar L
14.2 Requirements
14.2.1 Parent and Child Alignment
14.2.2 Patchwork Families
14.2.3 Graph Growing Direction
14.3 Algorithmic Steps
14.3.1 Recursive Family and Node Placement
14.3.2 Contours e
14.3.3 Combining Subtrees oL
14.4 Known Problems L

15 Example Graph Files
15.1 example.option.graph L
15.2 example.database.graph L L Lo oo
15.3 example.formal.graph Lo
15.4 example.neumann.graph oL oL oL Lo

16 Stack Macros
16.1 Creating a Stack L
16.2 PushtoaStack
16.3 Pop from a Stack
16.4 Peek into a Stack

309
309
312
318
320
333
333
334
334
335
335
336
336
337
337
338
338
339
339
340
340
341
341
342
343

347
347
347
348
348
349
349
350
351
352
352
352
353
354

357
357
358
359
360

16.5 Creating Stack Shortcuts
Bibliography

Index

Introduction

1.1 Genealogy Trees

The naming for mathematical tree structures with parent nodes and child nodes is traded from
historical family diagrams. But, creating a family diagram for medical and sociological studies
or family research can become surprisingly difficult with existing tools for tree visualization.
The simple reason is, that a mathematical tree has only one parent node for its direct children
nodes.

parent

/I\

child] [child child

With reverse logic, this can be used to visualize ancestor diagrams starting from an individual
to its predecessors:

grandfather] grandmother | | grandfather | | grandmother

father mother

proband

However, even the smallest family entity consisting of two parents and several children is no
mathematical tree but a more general graph:

[grandfather] grandmother | | grandfather | | grandmother

uncle || father || aunt mother || uncle

child || child || child

The genealogytree package aims to support such graphs which will be denoted genealogy trees
in the following. The graphs to be processed cannot become arbitrarily complex. A set of special
graphs for the description of family-like structures is supported by the package algorithms. From
at theoretical point of view, these graphs can be seen as a sort of annotated mathematical trees.

1.2 Package Design Principles and Philosophy

The emphasis of a genealogy tree is not the node or individual, but the family. A family is a
set of arbitrarily many parents and children. From an algorithmic point of view, there could be
more than two parents in a family.

father | | mother

,—|—|—|—| A single family

il chﬂd] [child

A node is either a parent or a child to a specific family. A node can also be child to one family
and parent to another (or many) families. Such a node is called a g-node (genealogy node) in
the following.

grandfather | | grandmother

uncle || father (g-node) || aunt | | mother

I T T T I Two families

child || child || child

The main restriction of the graph grammar is that there is exactly one g-node which connects
its enclosing family to another one. In the example above, the father node is the g-node in the
grandparents family. It is linked to the family with mother and children.

A strong driving force for elaborating and creating this package was to balance two contradictory
goals for diagram generation: automatism and customization. In the ideal case, a diagram
would be constructed automatically by data provided from an external data source and would
also be freely customizable in any thinkable way starting changing colors, lines, shapes, node
positioning, etc. In the real world, a trade-off between these goals has to be found.

Automatism:

e For a set of genealogy trees described by a grammar, see Chapter 4 on page 63, an auto-
layout algorithms computes the node positioning.

e The graph grammar is family-centric and supports ancestors and descendants diagrams.
For the later, multiple marriages can be used to a certain degree.

e The graph data can be written manually, but the package design is adjusted to process
automatically generated data. There are many genealogy programs which manage family
related data. The general idea is that such programs export selected diagram data in a
text file using the provided grammar. Processing GEDCOM!' files directly by the package
is not possible.

e While manipulations like coloring a single node can be done directly at node definition, the
package design makes a lot of efforts to allow manipulations aside from the actual place
of data definition, see Section 5.1.1 on page 78 and Section 5.1.2 on page 79. The idea
is that automatically generated data has not to be edited, but can be manipulated from
outside. Also, an automatically or manually generated data set can be used for several
distinct diagrams; e.g. the graph data in Section 15.1 on page 357 is used numerous times
inside this document for different diagrams.

!GEDCOM (GEnealogical Data COMmunication) is a widely used data exchange format.

10

The auto-layout algorithm is implemented in pure TEX/KATEX (without Lua). This imposes
all programming restrictions of this macro language on the implementation, but makes the
package independent of external tools and fosters A TEX customization.

Customization:

The auto-layout algorithm can be customized to e.g. prioritize certain paths or exclude
selected subtrees. Also, several node dimensions and distances can be changed globally or
locally.

The appearance of a node can be customized with all capabilities of TikZ [5] and
tcolorbox [4]. Also, the node text can be processed.

For the node content, a database concept can be used, see Chapter 7 on page 161. This
gives a high degree of customizing the data visualization inside the node.

The geometry of edges between nodes is not considered by the auto-layout algorithm, but
edges can also be customized in many ways, see Chapter 8 on page 203.

Several genealogy tree diagrams can be interconnected manually to form a more complex
total diagram.

On the technical side, the package is based on The TikZ and PGF Packages [5] and uses The
tcolorbox package [4] for the nodes. Since all processing is done in TEX/KTEX without Lua and
external tools, one should expect a lot of processing time for complex diagrams. Therefore, using
an externalization of the diagrams is recommended.

1.3

Comparison with Other Packages

This is not really a comparison, but more a hinting to other possibilities for graph drawing. 1
am not aware of another package with focus on genealogy trees as defined here, but surely there
are excellent other graph drawing packages. The first to name is TikZ itself. There, one will
find a bunch of graph drawing tools with different algorithms, partly implemented in Lua. The
second one is the forest package which is also very powerful and does not need Lua.

11

1.4 Installation

Typically, genealogytree will be installed as part of a major IMTEX distribution and there is
nothing special to do for a user.

If you intend to make a local installation manually, you have to install not only tcolorbox.sty,
but also all *.code.tex files in the local texmf tree.

- genealogytree.pdf
- genealogytree-example—*.pdf
- doc/ — latex/ — genealogytree/ - genealogytree-languages.pdf

- genealogytree.doc.sources.zip

L README
texmf/ -

- genealogytree.sty

- gtrcore.*.code.tex

L tex/ — latex/ — genealogytree/ -
- gtrlang.*.code.tex

- gtrlib.*.code.tex

1.5 Loading the Package

The base package genealogytree loads the package tcolorbox [4] with its skins, fitting,
and external libraries. This also loads several other packages are loaded, especially tikz [5]
with its arrows.meta and fit libraries.

genealogytree itself is loaded in the usual manner in the preamble:
\usepackage{genealogytree}

The package takes option keys in the key-value syntax. Alternatively, you may use these keys
later in the preamble with \gtruselibrary ~7!? (see there). For example, the key to use debug
code is:

\usepackage [debug] {genealogytree}

12

U 2017-01-20

1.6 Libraries

The base package genealogytree is extendable by program libraries. This is done by using
option keys while loading the package or inside the preamble by applying the following macro
with the same set of keys.
\gtruselibrary{(key list)}

Loads the libraries given by the (key list).

\gtruselibrary{all}

The following keys are used inside \gtruselibrary respectively \usepackage without the key
tree path /gtr/library/.

/gtr/library/debug {2)

Loads additional code for debugging a genealogy tree. This is also useful for displaying
additional informations during editing a graph; see Chapter 11 on page 249.

/gtr/library/templates (B templates)

Loads additional code for templates. These are styles to set various options by one key; see
Chapter 12 on page 269.

/gtr/library/fanchart ()

Loads additional code to draw ancestor fancharts. Therefor, the auto-layout algorithm is
replaced by a specialized other algorithm; see Chapter 13 on page 309.

/gtr/library/all (style, no value)

Loads all libraries listed above.

For the curious readers: There are additional core libraries which are loaded automatically
and which are not mentioned here. Also, languages are special libraries which are loaded by
\gtrloadlanguage 248,

Third party libraries (denoted external libraries) can also be loaded using \gtruselibrary, if

they follow the file naming scheme gtrlib. (key).code.tex

/% Loading ’gtrlib. foobar.code.tex’
\gtruselibrary{foobar}

Note that such external libraries are not version-checked as internal libraries are.

1.7 How to Get Started

You don’t have to read this long document to start creating your first genealogy tree. A good
starting point is to browse through the tutorials in Chapter 2 on page 15 and simply try some
of them on your computer. The package provides a lot of options and allows many adjustments
to node setting, but you do not need to know them in advance to create the first examples.

You should also take a look at Chapter 12 on page 269, where template examples are shown
which could be useful instantly.

For using advanced features, it is not harmful to know at least the basics of TikZ [5] and
tcolorbox [4], since genealogytree is based on both.

13

14

Tutorials

2.1 Tutorial: First Steps (Ancestor Tree)

2.1.1 Document Setup

Most examples in this documentation will display some code snippets which one can use in a
document with proper set-up. This very basic tutorial will create a tiny full document. If this
does not work on your system, there is probably some installation problem. Typically, this can
be solved by just updating the TEX distribution.

The very first document just tests, if the package is installed:

\documentclass{article}
\usepackage [all]{genealogytree}
\begin{document}

\section{First Test}

Package loaded but not used yet.
\end{document}

1 First Test

Package loaded but not used yet.

15

2.1.2 Creation of a Basic Ancestor Diagram

Now, we start with the very first genealogy tree. Such trees are family-centric. So, let us begin
with a family consisting of mother and father and three children. Chapter 4 on page 63 tells
us, that there are different kinds of families; the two main ones are parent and child. For
a single family, the choice is quite irrelevant. Here, we think about extending the example to
grandparents. Therefore, we take the parent construct.

Before the details are discussed, let us try a full example:

\documentclass{article}
\usepackage [all] {genealogytreel}
\begin{document}
\section{First Test}
\begin{tikzpicture}
\genealogytree{
parentq{
g{first child}
c{second child}
c{third child}
p{father}
p{mother}
}
}
\end{tikzpicture}
\end{document}

1 First Test

‘qu(luld |‘.~(~(’(;11(|(11)](| Hmmm“m |

The environment tikzpicture is the main picture environment from the TikZ [5] package.

\genealogytree ' can only be used inside such an environment.

When testing this example, be very sure about setting all braces properly. The internal parser
will react very sensitive on input errors. Of course, this is nothing new for a TEX user, but larger
trees will have a lot of hierarchical braces and error messages will likely not be very talkative
about where the error is.

The genealogytree package uses {} pairs for structuring and [] pairs for options like typical

ETEX does.

16

In the following, we will not see full documents but code snippets and their output. Note that
the full example used the all option to load all libraries of genealogytree, see Section 1.6 on
page 13. You should also add all libraries for testing the examples. Later, you may choose to
reduce the libraries.

Let us look at our example again with focus on the relevant part:

father mother

\begin{tikzpicture}
\genealogytree{
parentq{
g{first child}
c{second child}
c{third child} | ' | ' |
pLeRere first, child second child | (third child
p{mother}
}
}
\end{tikzpicture}

Our parent family has two parents denoted by p and three children, two of them denoted by
c as expected. But one child, not necessarily the first one, is denoted by g. This is the g-node
which connects a family uplink to another family. Here, we have a single family which is the
root family where no uplink exists. Nevertheless, a g-node has to be present.

17

2.1.3 Applying options

Certainly, the size and distance of the nodes can be changed. A quick way to adapt the graph

is to use preset values from a given /gtr/template 267, We put this to the option list of

\genealogytree "' 5.

\begin{tikzpicture}
\genealogytree[template=signpost]{
parent{ father mother
g{first child}
c{second child} | |
c{third child}
p{father} | | |
p{mother}

i first child second child third child

}
\end{tikzpicture}

Options can also be set for families and nodes. We enhance our genealogy tree by giving
/gtr/male 100 and /gtr/female "' 9! settings to the nodes:

\begin{tikzpicture}
\genealogytree [template=signpost]{
parent{ father mother
glfemale]{first child}
c[male]{second child} | |
c[female]{third child}
plmale]{father} | | |
plfemale] {mother}

i first child [l second child l| third child

}
\end{tikzpicture}

18

2.1.4 Growing the Tree

As next step, the father node shall get a grandfather and a grandmother. For this, the father
node has to become a g-node which links the grandparents family to the root family:

\begin{tikzpicture}
\genealogytree[template=signpost]{
parent{
glfemale]{first child}
c[male]{second child}
c[female]{third child} | |
parentq{
glmale]{father} | | |
}
plfemale] {mother}
}
}
\end{tikzpicture}

father mother

first child second child third child

Visually, nothing happened. But, the father node is now g-node of a new family. As in our root
family, we can add parents p and even other children c. Of course, these other children are the
siblings of the father node:

\begin{tikzpicture}
\genealogytree[template=signpost]{
parentq{
glfemale]{first child}
c[male]{second child}
c[female]{third child}
parentq{
c[female]{aunt}
glmale]{father}
c[male]{uncle}
plmale]{grandfather}
plfemale] {grandmother}
}
plfemale] {mother}
}
}
\end{tikzpicture}

grandfather

grandmother

aunt

uncle

mother

first child

second child

third child

One could replace all parents p by parent families with a single g-node. This would increase
the expense, but can be a good thing when editing and compiling a tree step by step.

We now prepare our tree for expansion and replace mother, grandfather, and grandmother with

19

appropriate parent families.

\begin{tikzpicture}
\genealogytree[template=signpost]{
parentq{
glfemale]{first child}
c[male]{second child}
c[female]l{third child}
parentq{
c[female]{aunt}
glmale]{father}
c[male]{uncle}
parent
{
% former ’p’ node
glmale]{grandfather}
}
parentq{
/i former ’p’ node
glfemale]{grandmother}
}
}
parent
{
7 former ’p’ mode
glfemale]{mother}
}
}
¥
\end{tikzpicture}

grandfather grandmother

aunt father

uncle

mother

first child

second child

third child

20

Again, we populate the three added families with parents p and children c.

\begin{tikzpicture}
\genealogytree[template=signpost]{
parentq{
glfemale]{first child}
c[malel{second child}
c[female]l{third child}
parentq{
c[female]{aunt}
glmale]{father}
c[male]{uncle}
parent
{
glmale]{grandfather}
plmale]{great-grandfather}
plfemale]{great-grandmother}
}
parentq{
glfemale]{grandmother}
plmale]{great-grandfather 2}
plfemale]{great-grandmother 2}
c[male] {granduncle}
}
}
parent
{
c[male]l{uncle 2}
glfemale]{mother}
plmale]{grandfather 2}
plfemale] {grandmother 23}

}
}
}
\end{tikzpicture}
great- great- great- great-
grandfather grandmother grand2father grandlznother
grand- grand-
grandfather grandmother granduncle father 2 mother 2
aunt father uncle uncle 2 mother
first child second child third child

21

2.1.5 Prioritize and Colorize a Path

After the tree has been grown to its final size, we want to influence the node positions. Let us
assume that the lineage from first child to great-grandmother 2 has to be especially emphasized.

To prioritize a node, the /gtr/pivot "7 option can be used. This will place a node centered

in relation to its ancestors and/or descendants. If this option is used for several connected nodes,
a straight lineage is generated. All other nodes are placed automatically to respect this lineage.

A ..
glpivot,female]{first child}
Ao

To emphasize this lineage further, the respective nodes should be colorized differently. With
standard settings, every node is drawn as a tcolorbox. Box options are given by /gtr/box 9%,
The options inside /gtr/box "% are tcolorbox options [4]. To add a yellowish background
color and glow, we use:

A ..
glpivot,box={colback=yellow!20,no shadow,fuzzy halo},female]{first child}
Ao

All option settings are pgfkeys options. So, it is easy to create a new option style highlight
which can be used for each node in the lineage. This can be done by \gtrset " °® or inside the
option list of \genealogytree "9,

\gtrset{highlight/.style={pivot,box={colback=yellow!20,no shadow,fuzzy halo}}}

Now, highlight can be used to apply /gtr/pivot ~'?7 and /gtr/box "% settings with one
key word:

Bo o
glhighlight,female]{first child}
Bo o

22

\begin{tikzpicture}
\genealogytree [template=signpost,

highlight/.style={pivot,box={colback=yellow!20,n0 shadow,fuzzy halo}},

{
parentq{

glhighlight,female]{first child}

c[malel{second child}
c[female]l{third child}
parentq{
c[female] {aunt}
glhighlight ,male]{father}
c[male]{uncle}
parent
{
glmale]{grandfather}
plmale]{great-grandfather}

plfemale]{great-grandmother}

}
parentq{

glhighlight,female] {grandmother}

plmale]{great-grandfather 2}

plhighlight,female]{great-grandmother 2}

c[male] {granduncle}
}
}
parent
{
c[male]l{uncle 2}
glfemale]{mother}
plmale]{grandfather 2}
plfemale] {grandmother 23}
}
}
}
\end{tikzpicture}
great- great- itz Ly
grandfather grandmother grand2father grandrznother
grandfather grandmother granduncle fgiigg_z mgg‘?}?e(i_ 9
aunt father uncle uncle 2 mother
first child second child third child

23

2.1.6 Changing the Timeflow

A genealogy tree may be grown in four directions depending on the given /gtr/timeflow
Now, we will let the time flow to the left. Additionally, we replace the /gtr/template
setting by individual settings for /gtr/processing 7138 /gtr/level size '® /gtr/node
size from % and /gtr/vox P 9.

\begin{tikzpicture}
\genealogytree[
timeflow=1left,
processing=tcolorbox,

level size=3.3cm,node size from=5mm to 4cm,
box={size=small,halign=center,valign=center,fontupper=\small\sffamily},
highlight/.style={pivot,box={colback=yellow!20,no shadow,fuzzy halo}},

IR

parent{

glhighlight,female]{first child}

c[male]{second child}
c[female]{third child}
parentq{
c[female] {aunt}
glhighlight,male]{father}
c[male]{uncle}
parent
{
glmale]{grandfather}
plmale]{great-grandfather}

plfemale] {great-grandmother}

}
parentq{

glhighlight,female] {grandmother}
plmale]{great-grandfather 2}

plhighlight,female] {great-grandmother 2}

c[male] {granduncle}
}
}
parent
{
c[male]{uncle 2}
glfemale] {mother}
plmale]{grandfather 2}
plfemale] {grandmother 23}
}

> P. 80
—P. 269

—[great-grandfather]

—[great-grandmother]

great-
grandfather 2

great-
]__ grandmother 2

}_

3
}
\end{tikzpicture}
—[grandfather
[aunt]—
(first child (father J4-{ grandmother
[second child [uncle]— [granduncle
hird child
[fire e [uncle 2]_—[grandfather 2]
mother]——[grandmother 2]

2.2 Tutorial: Diagram Manipulation by ID values (Descendant Tree)

This tutorial shows how set up and save a descendant diagram which is going to be manipulated
without changing the base data.

2.2.1 Creation of a Basic Descendant Diagram

For a genealogy tree displaying a descendant lineage, we take the child construct. As a first
step, we start with a single family. As always, this root family has to have a g-node which serves
no important role for a root family, but stands for a parent here. The resulting genealogy tree
will contain just small nodes without names to display some interconnection. For this, a preset
value from a given /gtr/template " 2% is used for quick setup.

\begin{tikzpicture}
\genealogytree[template=formal graph]{
child{
glmalel{a_13}
plfemalel{a_2}
c[femalel{a_3}
c[malel{a_4}
c[female]{a_5} as aq as

a a2

}
}
\end{tikzpicture}

The nodes of the diagram already have some options settings. To select and manipulate some
or many nodes later without editing the data, the nodes and families can be given unique
/gtr/id P92 values.

\begin{tikzpicture}
\genealogytree[template=formal graph]{
child[id=fam_AJ{
glid=nal,male]{a_1}
plid=na2,female]{a_2}
c[id=na3,female]{a_3}
c[id=na4,male]l{a_4}
c[id=na5,femalel{a_5} ag a4 as

a a2

}
}
\end{tikzpicture}

25

2.2.2 Growing the Tree

The nodes a3 and a4 shall become parent of their own families. To proceed in small steps, we
make them g-nodes of single-member child families which does not change the diagram. Both
new families get their own /gtr/id "™ 92 values for later reference.

\begin{tikzpicture}
\genealogytree[template=formal graph]{
child[id=fam_Al{
glid=nal,male]{a_1}
plid=na2,female]{a_2}
child[id=fam_B]{
glid=na3,female]{a_3}
}
child[id=fam_C]{
glid=na4,malel{a_4} as a4 as

a a2

}
c[id=na5,female]{a_5%}
}
¥
\end{tikzpicture}

Now, the new families are populated by a second parent and children.

\begin{tikzpicture}
\genealogytree [template=formal graph]{
child[id=fam_A]{
glid=nal,malel{a_1}
plid=na2,female]{a_2}
child[id=fam_B]{
plid=nbl,male]l{b_1}
glid=na3,femalel{a_3}
c[id=nb2,male]l{b_2}
c[id=nb3,female]{b_3}
} b
child[id=fam_C]{ .
glid=na4,male]{a_4} L
plid=nc1,femalel{c_1} by b3 c2
c[id=nc2,malel{c_2}
}
c[id=na5,female]{a_5}
}
¥
\end{tikzpicture}

a2

_[

C1 as

&}
EGHE
}_

%

As a specialty, a union construct can be used inside a child family. This represents a second
husband or wife including children for the g-node of the current child family. A union does
not get its own g-node but shares the g-node of the child family.

26

In our example, node a4 gets a union which has to be placed inside the family with id value
fam_C:

\begin{tikzpicture}
\genealogytree[template=formal graph]{
child[id=fam_A]{
glid=nal,male]{a_1}
plid=na2,female]{a_2}
child[id=fam_B]{
plid=nbl,malel{b_1}
glid=na3,female]{a_33}
c[id=nb2,male]{b_2}
c[id=nb3,female]{b_3}
}
child[id=fam_C]{
glid=na4,male]{a_4} b
plid=nci,femalel{c_1} e
c[id=nc2,male]{c_2}
union[id=fam_D]{
plid=nd1,female]l{d_1} b b3
c[id=nd2,female]l{d_2}
c[id=nd3,male]{d_3}
c[id=nd4,male]l{d_4}
}
}
c[id=nab,female]{a_5}
}
¥
\end{tikzpicture}

As the reader may note, for union constructs, the edges between the nodes are likely to
overlap. Therefore, to attenuate the effect, the vertical positions of the edges for fam_C
and fam_D are shifted automatically. Also, note the small visual separation at the cross-
point of both family edges. This is generated by using /gtr/edge/foreground 2! and
/gtr/edge/background 72! (here, as preset values).

In some context, fam_C and fam_D will be seen as a single aggregated family and will be called
patchwork family.

The tree is now grown further following the previous construction pattern.

27

\begin{tikzpicture}
\genealogytree [template=formal graph]{
child[id=fam_Al{
glid=nal,malel{a_1}
plid=na2,female]l{a_2}
child[id=fam_B]{
plid=nbl,male]l{b_1}
glid=na3,female]l{a_3}
c[id=nb2,male]l{b_2}
child[id=fam_E]{
plid=nel,male]{e_1}
glid=nb3,female] {b_3}
c[id=ne2,male]{e_2}
c[id=ne3,female]{e_3}
}
}
child[id=fam_C]{
glid=na4,male]{a_4}
plid=nc1,female]l{c_1}
child[id=fam_F]{
glid=nc2,malel{c_2}
plid=nf1,female]l{f_1}
c[id=nf2,male]{f_2}
c[id=nf3,female] {f_3}
c[id=nf4,male]{f_4}
}
union[id=fam_D]{
plid=ndl,femalel{d_1}
child[id=fam_G]{
plid=ngl,malel{g_1}
glid=nd2,female]l{d_2}
c[id=ng2,malel{g_2}
c[id=ng3,femalel{g_3%}
union[id=fam_H]{
plid=nhl,male]{h_1}
c[id=nh2,male]{h_2}
}
}
c[id=nd3,male]l{d_3}
child[id=fam_I]{
glid=nd4,male]{d_4}
plid=nil,female]{i_1}
c[id=ni2,female]{i_2}
c[id=ni3,female]{i_3}
c[id=ni4,female]l{i_4}
}
}
}
c[id=na5,female]{a_5}
}
}
\end{tikzpicture}

28

2.2.3 Separating Diagram Data and Diagram Drawing

For the second part of this tutorial, the final diagram data is now saved into a
file example.formal.graph, see Section 15.3 on page 359. That is everything inside
\genealogytree ' without the options of \genealogytree "I °°. Using the input construct,
graph drawing is done simply by the following:

\begin{tikzpicture}
\genealogytree [template=formal graph]
{input{example.formal.graph}}

\end{tikzpicture}
aq as
I I
i
b1 || as ag || a1
J; —I_r I
ba || e || s e || fr [} d2 hy d3 d4 i1
ex|les| | fa||fa||fa] |92]|]|93]]Phe ig || i3 || ia
In our example, the given /gtr/id 9% values are easy to remember since we choose them

nearly identical to the node content. For a not-so-formal example, this will be different. To
avoid digging into the data source for finding some /gtr/id " 92 value, the /gtr/show id "' 26
setting from the % library is useful:

\begin{tikzpicture}
\genealogytree [template=formal graph,show id]
{input{example.formal.graph}}

\end{tikzpicture}
'cmn Youmn
nal na2
£ A
am_
nb1 na3 na4 ncl ndl nab
I:lJ ;}
fam B fam C

£l
pm e r—'ﬁ —
nb2 ne1 nb3 nc2 nf1 ng nd?2 nh1 nd3 nd4 niil
\ 1_}\ J U J U J L

fam_E fam E fam H fam_I
=) r—:
ne2 ne3 nf2 nf3 nf4 ng2 ng3 nh2 ni?2 n13 ni4
[§ C —J

29

2.2.4 Emphasizing a Relationship Path

For the given example data, we will emphasize the relationship between node es and node iy in
our graph. The diagram above exposes the id values along the relationship path as ne3, nb3,
na3, nal and na2, na4, nd4, ni2. For emphasizing, we dim the colors of all other nodes and
brighten the colors for the nodes along this path.

> P

All these manipulations are done inside the option list of \genealogytree * 5 without changing

the diagram data directly.
1. /gtr/box "F 98 sets options to wash out all nodes.

2. /gtr/edges 29 sets options to wash out all edges.

.95

3. /gtr/options for node % sets box options to all nodes along the selected path to

display them emphasized.

- P.227

4. /gtr/extra edges for families sets extra edge options to all emphasized the

connection line along the selected path.

\begin{tikzpicture}
\genealogytree [template=formal graph,
box={colback=white, colupper=black!50,opacityframe=0.25},
edges={foreground=black!25,background=black!5},
options for node={ne3,nb3,na3,nal,na2,nas4,nd4,ni2}/
{box={colback=blue!50!red!20,colupper=black,opacityframe=1,fuzzy halol}},
extra edges for families={
x={fam_E}{nb3}{ne3},x={fam_B}{na3}{nb3},
x={fam_A}{nal,na2}{na3,nad},
x={fam_D}{na4}{nd4},x={fam_I}{nd4}{ni2}
}Hforeground=blue!50!red,no background},

]
{input{example.formal.graph}}
\end{tikzpicture}
ai || a2
I I
- - -
[)'1 as ayg 1 (]] as

)

e2 | | es foll sl | fa g2 |1 g3 | h2 12 i3 i4

30

Also, the parameters for the auto-layout algorithm can be changed using the known id values.
Our selected relationship path is emphasized further by straightening the lineages. This is done
by inserting /gtr/pivot " 97 values through /gtr/options for node "9,

\begin{tikzpicture}

\genealogytree[template=formal graph,
box={colback=white,colupper=black!50,opacityframe=0.25},
edges={foreground=black!25,background=black!5},
options for node={ne3,nb3,na3,nal,na2,na4,nd4,ni2}/

{box={colback=blue!50!red!20,colupper=black,opacityframe=1,fuzzy halol}},
extra edges for families={
x={fam_E}{nb3}{ne3},x={fam_B}{na3}{nb3},
x={fam_A}{nal,na2}{na3,na4},
x={fam_D}{na4}{nd4},x={fam_I}{nd4}{ni2}
Hforeground=blue!50!red,no background},
options for node={ne3,nb3,nd4,ni2}{pivot},
options for node={na3,nad4}{pivot=parent},

{input{example.formal.graph}}
\node [below] at (ne3.south) {Start of path};
\node [below] at (ni2.south) {End of path};

\path (nal) -- node[above=5mm]{Common ancestors} (na2);

\end{tikzpicture}

Common ancestors

aq a9
I

- - 1
bl as a4 C1 dl ag
bQ €1 bg (&) ,fl g1 d2 hl d3 d4 71
ex | fes| | fo| | fa|| fa]| 92| 93 |he ig | | i3 || da
Start of path End of path

All given /gtr/id "9 values are also TikZ nodes. Therefore, a genealogy tree can easily be
annotated and extended by TikZ instructions.

31

2.2.5 Coloring Subtrees

For the given example data, the descendants of the root family should now by colored with three
different colors. All in-law nodes should be visually separated from descendants of a1 and as.

As a first step, the subtree denoted by fam_B is colored in red by /gtr/options for
subtree " 197 Analogously, fam_C is colored in blue. Node aj is a leaf node without
own family and, therefore, is colored using /gtr/options for node "%, Also, the preset
/gtr/male 101 and /gtr/female "1 19! styles are made ineffective for this drawing.

This gives a colored genealogy tree, but not only the direct descendents are colored, but all
members of descendant families:

\begin{tikzpicture}
\genealogytree[template=formal graph,
male/.style={},female/.style={box={circular arcl}},
options for subtree={fam_B}{box={colback=red!20!whitel}},
options for subtree={fam_C,fam_D}{box={colback=blue!20!whitel}},
options for node={na5}{box={colback=green!20!whitel}},
]

{input{example.formal.graph}}
\end{tikzpicture}

ale}
20 1000

B

J; L

HDEG B @OHEE

62f2f4 g2h2 @@@

As can be inspected using /gtr/show type " ?%7 from the % library, the nodes to be
excluded are all p-nodes:

\begin{tikzpicture}
\genealogytree [template=formal graph,show type,
male/.style={},female/.style={box={circular arc}},
options for subtree={fam_B}{box={colback=red!20!white}},
options for subtree={fam_C,fam_D}{box={colback=blue!20!whitel}},
options for node={na5}{box={colback=green!20!whitel}},
]

{input{example.formal.graph}}
\end{tikzpicture}

32

"P59 or \gtrifpnode "7 %7, We use this to set up

P59 expands

This node type is accessible by \gtrnodetype
a tcolorbox style bleach p which wash out the in-law nodes, when \gtrifpnode
to (true). This style is formulated locally by /gtr/tcbset " 119

Ao..
tcbset={bleach p/.code={/
\gtrifpnode{\tcbset{enhanced jigsaw,opacityback=0.2}}{}/
11,
Bo o o

This gives:

\begin{tikzpicture}
\genealogytree[template=formal graph,
male/.style={},female/.style={box={circular arcl}},
tcbset={bleach p/.code={/
\gtrifpnode{\tcbset{enhanced jigsaw,opacityback=0.2}}{}/
11,
options for subtree={fam_B}{box={colback=red!20!white,bleach p}},
options for subtree={fam_C,fam_D}{box={colback=blue!20!white,bleach p}},
options for node={na5}{box={colback=green!20!whitel}},
]
{input{example.formal.graph}}

\draw [decorate,decoration={brace,amplitude=4mm,mirror,raise=2mm},
line width=1pt,yshift=0pt] (nb2.south west|-ne3.south) -- (ne3.south east)
node [align=center,below=9mm,midway,fill=red!20!white] {Descendants of a_3};
\draw [decorate,decoration={brace,amplitude=4mm,mirror,raise=2mm},

line width=1pt,yshift=0pt] (nf2.south west) -- (ni4.south east)
node [align=center,below=9mm,midway,fill=blue!20!white] {Descendants of a_4};
\end{tikzpicture}

@) (e)

(@)

I}
b
|©

>
=
IS ¥
w
IS
Ny

bg el @ C2 e g1
1EHONBOE ®O
~ N _
~~ ~
Descendants of as Descendants of as

33

2.3 Tutorial: A Database Family Diagram (Sand Clock)

This tutorial shows the application of a database concept for representing the node content.
Also, the sand clock diagram is shown which units ancestor and descendant graphs.

2.3.1 Creation of a Basic Sand Clock Diagram

The sandclock construct is the starting point for a sand glass type genealogy tree. The proband
is the constriction for the sand glass where the ancestors and descendants of the proband meet.
Therefore, a sandclock can and should contain child and parent constructs. There has to be
exactly one child, because a sandclock has no own g-node but inherits it from the child.

For the following examples, we use genealogypicture " °7 to create genealogy trees. This is a
handy combination of tikzpicture and \genealogytree ' %,

7% minimal sandclock diagram
\begin{genealogypicture} [template=formal graph]

sandclock
{
child{ proband l
g{\text{ proband }}
}
}

\end{genealogypicture}

Now, we can add parent and child constructs. Here, we use single-member families since the
tree will be grown later on.

/4 basic sandclock diagram (ready to be exztended)
\begin{genealogypicture} [template=formal graph]
sandclock
{
child{
g{\text{ proband }}
pla} \
child{/ grows in child direction A B
g{b}
}
child{/ grows in child direction
g{c}
}
}
parent{/ grows in parent direction b c
g{A}
}
parent{/ grows in parent direction
g{B}
}
}
\end{genealogypicture}

34

2.3.2 Node Content in Database Format
In the following, we will construct a family diagram for Carl Friedrich Gaufl (1777-1855).

We step back a little bit and consider the minimal sand clock diagram as starting point. The
node content, of course, may be any formatted ITEX text.

\begin{genealogypicture}

sandclock Carl
{ Friedrich
child{ Gauf3, born
g{Carl Friedrich \textbf{Gau\ss{}}, 1777, died
born 1777, died 1855 1855
}
¥
}

\end{genealogypicture}

In this context, the database approach means that the node content should not contain a format-
ted text but just the data core which is going to be formatted later. This is the same principle
as for creating a bibliography with biblatex or bibtex.

So, we tell genealogytree that we want to use such a database concept by setting
/gtr/processing "1 1% to database. Now, the content can be given as a key-value list. See
Chapter 7 on page 161 for all feasible keys.

Further, we tell genealogytree how to format this given data by setting /gtr/database
format " 17 to some predefined value. Everything can be customized later.

The basic information for a person is /gtr/database/name ~ 109,

/gtr/database/male 165 or /gtr/database/female " 165,
/gtr/database/birth 1% and /gtr/database/death "F170.
& g

\begin{genealogypicture}[
processing=database,
database format=medium marriage below,

]

sandclock —
{ Johann Carl
Friedrich GAUSS
child{ % April 30, 1777
;3= in Braunschweig
glid=GauxCarl1777]{ (Niedersachsen)
male, 1 February 23,
name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}}, 1855 in Gttingen
birth={1777-04-30}{Braunschweig (Niedersachsen)}, 55;:25:3;;13“
death={1855-02-23}{G\"ottingen (Niedersachsen)}, Astronom, Geodit
profession={Mathematiker, Astronom, Geod\"at und Physiker}, und Physiker.
image={Carl_Friedrich_Gauss.jpg},
}
}
¥

\end{genealogypicture}
In the example above, we also added a /gtr/database/profession 106
the output, and an /gtr/database/image "' 1% which is not used. Note the markup with
\pref "7 1¥ and \surn "7 !'¥* inside the /gtr/database/name " '6° which marks preferred
name parts and the surname. There is no name parsing as known from bib(la)tex.

which appears in

As /gtr/id 192 for Carl Friedrich Gau$, «GauxCar11777» was chosen. Such id values could
be chosen to your liking. As a common guideline, they should be human readable/under-
standable, because they may be needed to manipulate the graph afterwards and something like
«gdOh-xhag-Ough-opod-89sq-sdqj-8pah» may not be easily associated with Gaufl. Also, they

35

should be automatically producible for the comfortable case, that a genealogy program exports
data in this format.

In this tutorial, this common guideline is sharpened to follow these rules:

e A person id is build as XxxxYyyyZzzz, where Xxxx are four letters of the surname, Yyyy are
four letters of the (preferred) first name, and Zzzz is the year of birth (maybe, estimated).

o A family id is build as AaaaBbbbZzzz, where Aaaa are four letters of the husbands surname,
Bbbb are four letters of the wifes surname, and Zzzz is the year of marriage (maybe,
estimated).

e Onlya,...,z, A, ..., Zletters are used. Accented letters like umlauts are replaced by letters
from the masks above. If a name part is shorter than four letters, letters from the masks
are used for complement.

o If two identical id values are produced for two or more persons or families following these
rules, they are distinguished by adding -(counter).

2.3.3 Formatting the Node Content

First, we adapt some graph geometry settings to our liking. /gtr/node size 7% /gtr/level
size "P# and /gtr/level distance ™% set size and distance values.

With /gtr/box "8, we set tcolorbox options for the appearance of the node box. Note that
\gtrDBsex is set to male by the database values inside the node content. There are predefined
/tcb/male” P 101 and /tcb/female " 100 styles, but with /gtr/tcbset " 1% we change them
to colorize also the interior of the box.

\begin{genealogypicture}[

processing=database,

database format=medium marriage below,

node size=2.4cm,

level size=3.5cm,

level distance=6mm,

tcbset={male/.style={colframe=blue, colback=blue!5},
female/.style={colframe=red, colback=red!5}},

box={fit basedim=7pt,boxsep=2pt,segmentation style=solid,

halign=left,before upper=\parskipipt, Johann Carl
\gtrDBsex,drop fuzzy shadow, Friedrich Gauss
* April 30, 1777
} > in Braunschweig
1 (Niedersachsen)
t February 23,
sandclock 1855 in Géttin-
{ gen (Niedersach-
sen)
child{ Mathematiker,
. Ast ,
g[id=GauxCar11777]{ e oy
male, Physiker.

name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}},
birth={1777-04-30}{Braunschweig (Niedersachsen)},
death={1855-02-23}{G\"ottingen (Niedersachsen)},
profession={Mathematiker, Astronom, Geod\"at und Physikerl},
image={Carl_Friedrich_Gauss.jpg},
}
¥
}
\end{genealogypicture}

36

As second step, we adapt the format of the given data inside the node output.

Ao..

list separators hang,

name font=\bfseries,

surn code={\textcolor{red!50!black}{#1}},
place text={\newline}{},

date format=d/mon/yyyy,

Ao

With /gtr/list separators hang 194 the event list is formatted with hanging indent.
and /gtr/surn code "7'¥ are used to format the name of the per-
son. /gtr/place text !9 inserts a \newline before the place of an event is printed in our

/gtr/name font 185

example. Finally, /gtr/date format %0 is used to change the way dates are printed.

\begin{genealogypicture}[
processing=database,
database format=medium marriage below,
node size=2.4cm,
level size=3.b5cm,
level distance=6mm,
list separators hang,
name font=\bfseries,
surn code={\textcolor{red!50!black}{#1}},
place text={\newline}{},
date format=d/mon/yyyy,
tcbset={male/.style={colframe=blue, colback=blue!5},
female/.style={colframe=red,colback=red!5}},
box={fit basedim=7pt,boxsep=2pt,segmentation style=solid,
halign=left,before upper=\parskipipt,
\gtrDBsex,drop fuzzy shadow,

P
]
sandclock
{
child{
g[id=GauxCarl1777]{
male,
name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}},
birth={1777-04-30}{Braunschweig (Niedersachsen)},
death={1855-02-23}{G\"ottingen (Niedersachsen)},
profession={Mathematiker, Astronom, Geod\"at und Physiker},
image={Carl_Friedrich_Gauss.jpg},
}
¥
}

\end{genealogypicture}

37

Johann Carl

Friedrich Gauf3

* 30/Apr/1777
Braunschweig
(Niedersach-
sen)

t 23 /Feb/1855
Gottingen
(Niedersach-
sen)

Mathematiker,

Astronom, Geoddt

und Physiker.

_

2.3.4 Adding Images

The predefined /gtr/database format 17 options do not consider images. But we can add
image code easily to be /gtr/box "9 definition which accepts tcolorbox settings.

/tcb/if image defined "% decides, if an image is present, and sets tcolorbox
options accordingly. The file name of this image is \gtrDBimage which is set to
Carl_Friedrich_Gauss.jpg' by the database values inside the node content. Here, it is
accessed by /tikz/fill overzoom DBimage " -200.

Options from The tcolorbox package [4] are used to enlarge the box width by 25mm and fill the
space with this image:

\begin{genealogypicture}[

processing=database,

database format=medium marriage below,

node size=2.4cm,

level size=3.b5cm,

level distance=6mm,

list separators hang,

name font=\bfseries,

surn code={\textcolor{red!50!black}{#1}},

place text={\newline}{},

date format=d/mon/yyyy,

tcbset={male/.style={colframe=blue,colback=blue!5},

female/.style={colframe=red,colback=red!5}},

box={fit basedim=7pt,boxsep=2pt,segmentation style=solid,
halign=left,before upper=\parskipipt,
\gtrDBsex,drop fuzzy shadow,
if image defined={add to width=25mm,right=25mm,

underlay={\begin{tcbclipinterior}\path[fill overzoom DBimage]
([xshift=-24mm] interior.south east) rectangle (interior.north east);
\end{tcbclipinterior}},

H3,
P
]
sandclock
{
child{
g[id=GauxCarl1777]{
male,
name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}},
birth={1777-04-30}{Braunschweig (Niedersachsen)},
death={1855-02-23}{G\"ottingen (Niedersachsen)},
profession={Mathematiker, Astronom, Geod\"at und Physiker},
image={Carl_Friedrich_Gauss.jpg},
3
}
}

\end{genealogypicture}

Johann Carl

Friedrich Gaufl

* 30/Apr/1777
Braunschweig
(Niedersach-
sen)

t 23 /Feb/1855
Gottingen
(Niedersach-
sen)

Mathematiker,

Astronom, Geoddt

und Physiker.

thttp://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg

38

http://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg

2.3.5 Full Example with Frame

The sandclock example is now extended with family and ancestors and descendants of
Gaufl as shown at the beginning of this tutorial. The full sandclock example is saved as
«example.gauss.graph»:

File «example.gauss.graphn

sandclock{
child[id=GauaOsth1805]{
plid=0sthJoha1780]{
female,
name={\pref{Johanna} Elisabeth Rosina \surn{Osthoff}},
birth={1780-05-08}{Braunschweig (Niedersachsen)},
marriage={1805-10-09}{Braunschweig (Niedersachsen)},
death={1809-10-11}{G\"ottingen (Niedersachsen)},
comment={Wei\ss{}gerberstochter},
}
gl[id=GauxCarl1777]{
male,
name={Johann \pref{Carl Friedrich} \surn{Gau\ss{}}},
birth={1777-04-30}{Braunschweig (Niedersachsen)},
death={1855-02-23}{G\"ottingen (Niedersachsen)},
profession={Mathematiker, Astronom, Geod\"at und Physiker},
image={Carl_Friedrich_Gauss. jpgl},
}
c[id=GauxCar11806]{
male,
name={\pref{Carl} Joseph \surn{Gau\ss{}}},
birth={1806-08-21}{Braunschweig (Niedersachsen)},
death={1873-07-04}{Hannover (Niedersachsen)},
}
c[id=GauxWilh1808]{
female,
name={\pref{Wilhelmina} \surn{Gau\ss{}}},
birth={1808-02-29}{G\"ottingen (Niedersachsen)},
death={1840-08-12}{T\"ubingen (Baden-W\"urttemberg)l},
}
c[id=GauxLudw1809]{
male,
name={\pref{Ludwig} \surn{Gau\ss{}}},
birth={1809-09-10}{G\"ottingen (Niedersachsen)},
death={1810-03-01}{G\"ottingen (Niedersachsen)},
}
union[id=GauaWald1810]{
plid=WaldFrie1788]{
female,
name={\pref{Friederica} Wilhelmine \surn{Waldeck}},
birth={1788-04-15}{G\"ottingen (Niedersachsen)},
marriage={1810-08-14}{G\"ottingen (Niedersachsen)},
death={1831-09-12}{G\"ottingen (Niedersachsen)},
comment={Rechtswissenschaftlerstochter},
}
c[id=GauxEuge1811]{
male,
name={\pref{Eugen} Peter Samuel Marius \surn{Gau\ss{}}},
birth={1811-07-29}{G\"ottingen (Niedersachsen)},
death={1896-07-04}{Columbia (Missouri)},
profession={Rechtswissenschaftler, Kaufmann},
}
c[id=GauxWilh1813]{
male,
name={\pref{Wilhelm} August Carl Matthias \surn{Gau\ss{}}},
birth={1813-10-23}{G\"ottingen (Niedersachsen)},

39

death={1879-08-23}{St. Louis (Missouri)},
}
c[id=GauxTher1816]{
female,
name={Henriette Wilhelmine Karoline \pref{Therese} \surn{Gau\ss{}}},
birth={1816-06-09}{G\"ottingen (Niedersachsen)},
death={1864-02-11}{Dresden (Sachsen)},
}
}
}
parent [id=GoosEgge1735]{
g[id=GauxGebh1743]{
male,
name={\pref{Gebhard} Dietrich \surn{Gau\ss{}}},
birth={1743-02-13}{Braunschweig (Niedersachsen)},
death={1808-04-14}{Braunschweig (Niedersachsen)},
profession={G\"artner, Wasserkunstmeister, Rechnungsf\"uhrer},
}
parent [id=GoosLbtk1705]{
glid=GoosJyrg17151{
male,
name={\pref{J\"urgen} \surn{Gooss}},
birth={1715}{V\"olkenrode (Niedersachen)},
death={1774-07-05}{Braunschweig (Niedersachsen)},
profession={Lehmmaurer},
}
plid=GoosHinr1655]{
male,
name={\pref{Hinrich} \surn{Gooss}},
birth={(caAD)1655}{},
death={1726-10-25}{V\"olkenrode (Niedersachen)},
}
plid=LxtkKath1674]{
female,
name={\pref{Katharina} \surn{L\"utken}},
birth={1674-08-19}{V\"olkenrode (Niedersachen)},
marriage={1705-11-24}{V\"olkenrode (Niedersachen)},
death={1749-04-15}{V\"olkenrode (Niedersachen)},
}
}
plid=EggeKath1710]{
female,
name={\pref{Katharina} Magdalena \surn{Eggenlings}},
birth={(caAD)1710}{Rethen},
marriage={(caAD)1735}{V\"olkenrode (Niedersachen)},
death={1774-04-03}{Braunschweig (Niedersachsen)},
}
}
parent [id=BentKron1740]{
glid=BenzDoro1743]{
female,
name={\pref{Dorothea} \surn{Benzel}},
birth={1743-06-18}{Velpke (Niedersachsen)},
marriage={1776-04-25}{Velpke (Niedersachsen)},
death={1839-04-18}{G\"ottingen (Niedersachsen)},
comment={Steinhauerstochter},
}
parent [id=BentBbbb1740]{
gl[id=BentChri1717]1{
male,
name={\pref{Christoph} \surn{Bentze}},
birth={1717}{Velpke (Niedersachsen)},
death={1748-09-01}{Velpke (Niedersachsen)},
profession={Steinhauer},

40

}
plid=BentAndr1687]{
male,
name={\pref{Andreas} \surn{Bentzel}},
birth={1687-02}{},
death={(caAD)1750}{Velpke (Niedersachsen)},
}
}
plid=KronKath1710]{
female,
name={\pref{Katharina} \surn{Krone}},
birth={(caAD)1710}{},
death={1743/}{Velpke (Niedersachsen)},

As final polish, /gtr/edges " 2% are set to be rounded and the used symbols are recorded

by /gtr/symbols record reset 2% and displayed by \gtrSymbolsLegend "% inside
/gtr/after tree T 115,

Finally, the whole diagram is put into a titled tcolorbox to exhibit the example:

\begin{tcolorbox} [enhanced, sharp corners,boxrule=0.6pt,left=0pt,right=0pt,
colback=blue!50!black,interior style image=goldshade.png,
halign=center,center title,fonttitle=\bfseries,
title={The Family of Carl Friedrich Gau\ss{} (1777--1855)} 1]

\begin{genealogypicture}[
processing=database,
database format=medium marriage below,
node size=2.4cm,
level size=3.5cm,
level distance=6mm,
list separators hang,
name font=\bfseries,
surn code={\textcolor{red!50!black}{#1}},
place text={\newlinel}{},
date format=d/mon/yyyy,
tcbset={male/.style={colframe=blue,colback=blue!5},

female/.style={colframe=red,colback=red!5}},
box={fit basedim=7pt,boxsep=2pt,segmentation style=solid,
halign=flush left,before upper=\parskipipt,
\gtrDBsex,drop fuzzy shadow,
if image defined={add to width=25mm,right=25mm,
underlay={\begin{tcbclipinterior}\path[fill overzoom DBimage]
([xshift=-24mm] interior.south east) rectangle (interior.north east);
\end{tcbclipinteriorl}},
H3,
Fo
edges=rounded,
symbols record reset,
after tree={\node[font=\scriptsize\itshape,text width=1.8cm,below left,
fill=white,fill opacity=0.4,text opacity=1]
at (current bounding box.north east) {\gtrSymbolsLegend};},

input{example.gauss.graph}

\end{genealogypicture}
\end{tcolorbox}

41

The Family of Carl Friedrich Gauf3 (1777—-1855)

-
Hinrich Gooss Katharina Andreas Bentze *=born,
* ca. 1655 Liitken * Feb/1687 @ =married
t25/0ct /1726 * 19/Aug/1674 t ca. 1750 t=died. '
Volkenrode Volkenrode Velpke
(Nieder- (Niedersachen) (Niedersach-
sachen) t 15/Apr/1749 sen)
Volkenrode
(Niedersachen)
@® 24/Nov /1705
Voélkenrode
(Niedersachen)
Jiirgen Gooss Katharina Christoph Katharina
* 1715 Magda}ena Bentze Krone
Vélkenrode Eggenlings * 1717 * ca. 1710
(Nieder- €3 @ ﬁ710 Velpke 1 after 1743
sachen) Rethen (Niedersach- Velpke
t5/Jul/1774 t ?B/rggfléig\?vil i sen) (Niedersach-
Braunschweig (Niedersachs%n) t 1/Sep/1748 sen)
(Niedersach- Velpke
sen) ® ca. 1735 (Niedersach-
Lehmmaurer. Valenmede se.n)
(Niedersachen) Steinhauer.
Gebhard Dorothea Benze
Diet;'ich/GauB * \1]81/J121n/1743
% 13/Feb/1743 elpke
Braunschweig (Niedersachsen)
(Niedersachsen) t g/ﬁ;‘pr/lSBQ
t 14/Apr/1808 grunsen
Br{iuﬁgéhweig (Nlederséchsen)
(Niedersachsen) f:fmha"”StOCh'
Girtner, .
Wa§serkunst— ® 25/Apr/1776
meister, B Velpke
Rechnungsfiihrer. (Niedersachsen)
-
Johanna Johann Carl F‘m'.edem'm X
Elisabeth Rosina Friedrich Gauf3 wﬂl};elmkme
Osthoff g aldec
o ;/I\/?ay/l780 * 30/Apr/1777 * 15/Apr/1788
Braunschweig Braunschweig Gottingen
(Niedersachsen) (Niedersachsen) (Niedersachsen)
t11/Oct/1809 t 23/Feb/1855 T iden
Gottingen Gottingen (Niedersachsen)
(Niedersachsen) (Niedersachsen) Peaiionios
Weifigerberstochter. Mathematiker, senschaftlerstochter.
Ast
@ 9/0Oct/1805 GZQT;;OZ;Zd ® 14/Aug/1810
Braunschweig) Gottingen
(Niedersachsen) JSUEET (Niedersachsen)
\
([i
L A A
Carl Joseph Wilhelmina Ludwig Gaufl Eugen Peter Wilhelm Henriette
Gaufl Gaufl * 10/Sep/1809 %amil;el Marius ﬁuguﬁt Carl \Iglilhzlelmine
* 21/Aug/1806 * 29/Feb/1808 Gottingen am atthias aroline
Braunschweig Gottingen (Niedersach- * 29/Jul/1811 Gaufl Therese Gaufl
(Niedersach- (Niedersach- sen) Go,ttmg?n) % 23/Oct/1813 % 9/Jun/1816
sen) sen) t 1/Mar/1810 (Niedersachsen) Gottingen Gottingen
t4/Jul/1873 t 12/Aug/1840 Gottingen ¥4/ Jul/ 1896 (Niedersach- (Niedersach-
Hannover Tibingen (Niedersach- (I\(/}i:;gulr?) sen) sen)
(Niedersach- (Baden- sen) . t 23/Aug/1879 t 11/Feb/1864
o Rechtswis- f
sen) Wiirttemberg) St. Louis Dresden
senschaftler, Miss ! Sachs
Eomtinaion, (Missouri) (Sachsen)

42

2.4 Tutorial: Descendants of the Grandparents (Connecting Trees)

This tutorial will show how to create a «descendants of the grandparents» type of diagram. For
this, two genealogy trees have to be connected.

2.4.1 Descendants of the Two Grandparents

Since «descendants of the grandparents» cannot be formulated by the grammar of this package,
see Chapter 4 on page 63, a descendants tree for each pair of grandparents is considered.

In this example, the proband is ¢4. First, we take a look at the descendants of the father’s
parents a; and as. Note that we arranged the red colored father’s family at the right hand
side and that the father node ¢; has a combined /gtr/id "7 ?? of c1@a, because we added an
/gtr/id suffix 19 of @a to every id value of our first tree.

\begin{tikzpicture}
\genealogytree [template=formal graph,id suffix=0a,
tcbset={male/.style={sharp corners},female/.style={circular arc}},
edges={anchoring=center},box={colback=green!25}]

{
child{
glmalel{a_1} plfemalel{a_2} cl[female]{a_3}
child{
plmalel{a_4} glfemalel{a_5} cl[femalel{a_6}
child{
plmalel{a_7} glfemalel{a_8} clmalel{a_9}
}
}
child[family box={colback=red!25}]1{
glmale,id=c1]{c_1} plfemalel{c_2}
c[femalel{c_3} cl[female,box={fuzzy halo,colback=yellow}]{c_4} cl[male]{c_5}
}
}
}
\end{tikzpicture}

al
:]

ag

The other settings in this example are less important, but one may observe that the
/tcb/male " P 101 and /tcb/female T 101 styles were redefined to show not different colors but
different shapes.

43

Secondly, we take a look at the descendants of the mother’s parents b; and bs. Note that this
time we arranged the red colored mother’s family at the left hand side and that the father node
c1 has a different /gtr/id "™ 92 of c1@b, because we added an /gtr/id suffix 9 of @b to
every id value of our second tree.

\begin{tikzpicture}
\genealogytree[template=formal graph,id suffix=@b,
tcbset={male/.style={sharp corners},female/.style={circular arcl}},
edges={anchoring=center},box={colback=blue!25}]

{
child{

glmalel{b_1} plfemalel{b_2}

child[family box={colback=red!25}]{
plmale,id=c1]{c_1} glfemalel{c_2}
c[femalel{c_3} cl[female,box={fuzzy halo,colback=yellow}]{c_4} clmalel{c_53}

}

child{
plmalel{b_3} glfemalel{b_4}
c[female]{b_5} clmalel{b_6} clmalel{b_7}
union{

plmale]l{b_8} cl[femalel{b_9}

}

}

child{
glmalel{b_{10}} plfemalel{b_{11}}
c[female]l{b_{12}} clmalel{b_{13}}

}

}
}
\end{tikzpicture}

2.4.2 Connected Diagram
After the preparations, the \genealogytree % diagrams can easily be put together.

»P.111 > P. 55

Using /gtr/set position with value c1@b at c1@a for the second \genealogytree
puts node ¢; from the diagram directly on node c¢; of the first \genealogytree "%, Note that
in a more complicated situation more manual intervention may be necessary to avoid unwanted
overlapping of other nodes.

»P. 55 x> P 127

In the first \genealogytree , one sees a /gtr/phantom option which makes the first

family ¢y, ..., cs invisible but still space reserving.

»P. 94 »P. 94

Using /gtr/id suffix or /gtr/id prefix allows to distinguish nodes with the same
id value in different trees. Otherwise, the id values would have to be changed manually.

44

\begin{tikzpicture}

\gtrset{template=formal graph,
tcbset={male/.style={sharp corners},female/.style={circular arcl}},
edges={anchoring=center},

¥

\genealogytree [box={colback=green!25},id suffix=0a]

{
child{

glmalel{a_1} plfemalel{a_2} cl[female]{a_3}
child{
plmalel{a_4} glfemalel{a_5} cl[femalel{a_6}
child{
plmalel{a_7} glfemalel{a_8} cl[malel{a_9}
}
}
child [phantomx]{
glmale,id=c1]{c_1} plfemalel{c_2}
c[female]{c_3} cl[femalel{c_4} cl[male]l{c_5}
}
}
}
\genealogytree [box={colback=blue!25}, id suffix=@b, set position=cl@b at cl@a]

child{

glmalel{b_1} plfemale]l{b_2}

child[family box={colback=red!25}]{
plmale,id=c1]{c_1} glfemalel{c_2}
c[female]l{c_3} clfemale,box={fuzzy halo,colback=yellow}]{c_4} c[malel{c_5}

}

child{
plmalel{b_3} glfemalel{b_4}
c[female]{b_5} c[male]l{b_6} cl[male]l{b_7}
union{

plmalel{b_8} cl[femalel{b_9}

}

}

child{
glmale]{b_{10}} plfemalel{b_{11}}
c[female]{b_{12}} clmalel{b_{13}}

}

}
}
\end{tikzpicture}

@E® [
OHEG OO

ag

45

2.5 Tutorial: Multi-Ancestors

In the following, a multi-ancestor denotes an ancestor who is connected over more than one
descendency line to the proband, i.e. where descendants have children with other descendents.
This situation is not covered by the auto-layout algorithm. Depending on the complexity, such
a graph can be drawn by manipulating one or more genealogy trees.

2.5.1 Triple Ancestor Example

In this example, X and Y are triple ancesters of the proband Z. As first step, a child diagram
is set up with all three descendency lines from X and Y to Z, but only the c line is drawn fully.
In our example, a5 and bs are parents to bg, also bg and c5 are parents to Z (not yet displayed).

\begin{genealogypicture}[template=formal graph,timeflow=left,
]
child{
glmale]{X} plfemalel{Y}
child{ glmalel{a_1}
child{ glfemale]l{a_2}
child{ glfemalel{a_3}
child{ glmalel{a_4}
child{ glfemale]l{a_5}
}F3
child{ glmalel{b_1}
child{ glmalel{b_2}
child{ glmalel{b_3}
child{ g[malel{b_4}
child{ glmalel{b_5}
child{ glfemale]l{b_6}
133
child{ glmalel{c_1}
child{ glfemale]l{c_2}
child{ glmale]l{c_3}
child{ glfemale]l{c_4}
child{ glmalel{c_5}
child{ glmalel{Z}
I3
3
}
\end{genealogypicture}

S
Tt

ag]——+ ay)
X
by | b

T LI
I%I
— T

|
R
—

46

2.5.2 Adding Edges Manually

Now, we add the missing connections. For this, /gtr/id " °? values are added to all involved

nodes and families. Then, the connections are drawn using /gtr/add parent 2?2 to add as
as additional parent for bg, and to add bg as additional parent for Z.

The diagram has all necessary edges now, but, currently, is not balanced.

\begin{genealogypicture} [template=formal graph,timeflow=left,
add parent=ab5 to AB_fam,
add parent=b6 to BC_fam,
]
child{
glmale]{X} plfemalel{Y}
child{ glmale]l{a_1}
child{ glfemalel{a_2}
child{ glfemalel{a_3}
child{ glmalel{a_4}
child{ glfemale,id=ab]{a_5}
I3
child{ glmalel{b_1}
child{ glmalel{b_2}
child{ glmalel{b_3}
child{ glmalel{b_4}
child[id=AB_fam]{ gl[male]l{b_5}
child{ glfemale,id=b6]{b_6}
33}
child{ glmalel{c_1}
child{ glfemale]l{c_2}
child{ glmalel{c_3}
child{ glfemalel{c_4}
child[id=BC_fam]{ glmalel{c_5}
child{ glmale]l{Z}
I3
3
}
\end{genealogypicture}

H-
) =
be bs by bs
by | b L
A C5HC4HC3HCQH01

47

2.5.3 Manual Position Adjustments

To balance the graph, the final position of the bg is adjusted using the /gtr/tikz ~ 193 option

with some TikZ shift operations. These final shiftings do not influence the auto-layout algorithm,
but the edges move with the nodes.

Alternatively, /gtr/distance "7 /gtr/pivot "7 and /gtr/pivot shift !9 can be
used to influence the auto-layout algorithm. /gtr/pivot shift "7 19 was used for the Z node
to move it inside its family. But these manipulations would not move a node from its layer as
was done for bg to display the generation skip.

\begin{genealogypicture} [template=formal graph,timeflow=left,
add parent=ab to AB_fam,
add parent=b6 to BC_fam,
]
child{
glmale]{X} plfemalel{Y}
child{ glmalel{a_1}
child{ glfemale]l{a_2}
child{ glfemale]l{a_3}
child{ glmalel{a_4}
child{ glfemale,id=ab]{a_5}
1313}
child{ glmalel{b_1}
child{ glmale]l{b_2}
child{ glmale]l{b_3}
child{ glmalel{b_4}
child[id=AB_fam]{ gl[male]l{b_5}
child{ glfemale,id=b6,tikz={xshift=-6.5mm,yshift=5.5mm}]{b_6}
133
child{ glmale]l{c_1}
child{ glfemale]{c_2}
child{ glmalel{c_3}
child{ glfemale]l{c_4}
child[id=BC_fam,pivot shift=-8.25mm]{ glmale]{c_5}
child{ glmalel{Z}
I3
1
}
\end{genealogypicture}

as

()

bQH by

1 1 1

H
o

C3

48

2.6 Tutorial: Externalization

Creating diagrams requires a considerable amount of compilation time. Especially, if the doc-
ument contains several diagrams, it is desirable to avoid compiling already finished diagrams
on every document run. One solution would be to create a document for every diagram and to
include the resulting PDF to the main document. Another way is known as ezternalization.

2.6.1 Externalization Process

Ezxternalization means that diagrams are edited inside the main document as usual, but they
are automatically exported to external files, compiled if necessary, and the resulting PDF files
are included to the main document as images. At least two externalization options are available:

o TikZ externalization: Here, the whole original document is compiled in a sophisticated
way. The external library of TikZ can automatically externalize all tikzpicture envi-
ronments, see [5].

e tcolorbox externalization: Here, marked code snippets are compiled in a not so sophisti-
cated but more robust way. The external library of tcolorbox only externalizes marked
and named snippets. Besides tikzpicture environments, genealogypicture environ-
ments and other constructs can be externalized. These snippets are written to external
files, compiled and the resulting PDF files are included to the main document as images,
see [4].

The further tutorial describes the externalization using the external library of tcolorbox. This
library is already included by the genealogytree package.

2.6.2 Document Setup

To use the externalization, the preamble of the main document has to contain the
\tcbEXTERNALIZE command. Without this command, no externalization operation will be ex-
ecuted. Typically, \tcbEXTERNALIZE is the last entry of the preamble. Everything between
\tcbEXTERNALIZE and \begin{document} is thrown away in the external document.

\documentclass{article}
\usepackage[all]{genealogytree}

\tcbEXTERNALIZE

\begin{document}
\section{My heading}
% ooc
Your main document containing texts, diagrams, figures, etc.
B oooc
\end{document}

To use the externalization options, the compiler has to be called with the -shell-escape
permission to authorize potentially dangerous system calls. Be warned that this is a
security risk.

49

2.6.3 Marking Diagrams for Externalization

Before we care about externalization, we set up an example with two genealogy tree diagrams.
One uses a tikzpicture and the other one the genealogypicture "™ °7 shortcut.

This is the first example:\par\smallskip
\begin{tikzpicture}
\genealogytree [template=symbol nodes]{
child{
gm pf cf
child{gm pf cf cm}
child{gm pf cm c- cm}
}
}
\end{tikzpicture}

\bigskip Now follows the second example:\par\smallskip
\begin{genealogypicture} [template=tiny boxes]
child{
g-p-c-
child{g-p-c-c-}
child{g-p-c-c-c-}
}
\end{genealogypicture}

This is the first example:

Now follows the second example:

To externalize the diagrams, the document has to be set up as described in the previous sub-
section. Further, both diagrams have to be marked for externalization:

o Replace tikzpicture by extikzpicture and add a unique name as additional parameter.

P.

+ Replace genealogypicture ' °7 by exgenealogypicture ' °7 and add a unique name

as additional parameter.

By default, these unique names are the names of the external files inside an external sub-
directory. Depending on the operation system, the sub-directory external may have to be
generated manually.

20

This is the first externalized example:\par\smallskip
\begin{extikzpicture}{first_example}
\genealogytree [template=symbol nodes]{
child{
gm pf cf
child{gm pf cf cm}
child{gm pf cm c- cm}
}
}
\end{extikzpicture}

\bigskip Now follows the second externalized example:\par\smallskip
\begin{exgenealogypicture}{second_examplel} [template=tiny boxes]
child{
g p-c-
child{g-p-c-c-}
child{g-p-c-c-c-
}
\end{exgenealogypicture}

This is the first externalized example:

Now follows the second externalized example:

After the diagrams are generated, they are compiled only again, if the diagram content changes.
Changes caused by global settings will not be recognized.

To force recreation, just delete the external files. Another way is to add an exclamation mark
as an option.

/% The next example is always compiled because of ’!’ :
\begin{exgenealogypicture}[!]{second_example} [template=tiny boxes]
child{
gp~c-
child{g-p-c-c-}
child{g-p-c-c-c-}
}
\end{exgenealogypicture}

More details about controlling the externalization process are found in [4].

51

2.7 Tutorial: Conversion to Pixel Images

This tutorial is somewhat off-topic, because it considers the conversion of vector images to pixel
images and is not directly related to genealogy trees. On the other hand, the need for conversion
of such diagrams arises often, e.g. for third-party photo quality printing, web content, and import
to pixel-focused software.

o This tutorial only considers the conversion from PDF (vector image) to PNG (pixel image).
Further conversions to e.g. JPEG can be adapted or easily done from PNG to JPEG with
many available tools.

o This presentation is not exhaustive. It only gives a short glimpse of some selected options
for the conversion tools.

2.7.1 Command Line Conversion with MuPDF

Here, we assume to already have a vector image file example.pdf which has to be converted to
PNG.

First, MuPDF? has to be installed on the system, if it not already is. It provides a command
line tool mutool for conversion which is not necessarily allocatable by the standard system path
settings.

The following example conversion has to be given on a single line using a command shell (com-
mand window) or inside a script:

Command line example (a single line)

mutool draw -r 600 -o "example.png" "example.pdf"

o Replace mutool by an appropriate adaption (with path) for your system.
e The example input file is "example.pdf" and the example output file is "example.png".

e Adapt -r 600 to get larger or smaller pixel images. It defines the dots per inch resolution.

2.7.2 Command Line Conversion with Ghostscript

Here, we assume to already have a vector image file example.pdf which has to be converted to
PNG.

First, Ghostscript® has to be installed on the system, if it not already is. It provides a command
line tool gs or gswin32c or gswin64c for conversion which is not necessarily allocatable by the
standard system path settings.

The following example conversion has to be given on a single line using a command shell (com-
mand window) or inside a script:

Command line example (a single line)
gswin64c -dSAFER -dBATCH -dNOPAUSE -sDEVICE=pngl6m -r600 -dTextAlphaBits=4
-dGraphicsAlphaBits=4 -sOutputFile="example.png" "example.pdf"
o Replace gswin64c by an appropriate adaption (with path) for your system.
e The example input file is "example.pdf" and the example output file is "example.png".

e Adapt -r600 to get larger or smaller pixel images. It defines the dots per inch resolution.

Zmupdf.com
3www.ghostscript.com

92

mupdf.com
www.ghostscript.com

2.7.3 Command Line Conversion with ImageMagick

Here, we assume to already have a vector image file example.pdf which has to be converted to
PNG.

First, ImageMagick® has to be installed on the system, if it not already is. It provides a
command line tool convert for conversion which is typically allocatable by the standard system
path settings.

The following example conversion has to be given on a single line using a command shell (com-
mand window) or inside a script:

Command line example

convert -density 600 -alpha Remove -quality 90 "example.pdf" "example.png"

e Replace convert by an appropriate adaption for your system, if needed. On Windows,
there a other programs named convert which may lead to conflicts.

e The example input file is "example.pdf" and the example output file is "example.png".

e Adapt -density 600 to get larger or smaller pixel images. It defines the dots per inch
resolution.

2.7.4 Conversion with the 'standalone’ Package

Conversion to pixel images can be done using the standalone package. Also, this package is
designed to create standalone graphics.

By default, the package uses ImageMagick for conversion in the background. See the package
documentation for specific considerations for Windows.

\documentclass[
border=2mm,
convert={ density=600 -alpha Remove, outext=.png }
J{standalone}

\usepackage[all] {genealogytreel}

\usepackage{lmodern}

\begin{document}

\begin{genealogypicture} [template=symbol nodes]
parent{
g{male}
insert{gtrparent4}
}
\end{genealogypicture}

\end{document}
e If the document above is compiled with the ~shell-escape permission, the compiled PDF
files is converted to PNG automatically.

e Adapt density=600 to get larger or smaller pixel images. It defines the dots per inch
resolution.

4http://www.imagemagick.org

93

http://www.imagemagick.org

2.7.5 Conversion during Externalization

If externalization with tcolorbox is used, see Section 2.6 on page 49, possibly many PDF vector
images are created. With the following hack, an automatic conversion with mutool from MuPDF
is added to the external compilation.

\documentclass{article}
\usepackage [all]{genealogytree}
\usepackage{lmodern}

\tcbEXTERNALIZE

\makeatletter
\appto\tcbexternal@corecompile{/
\ShellEscape{/
"mutool"
draw
-r 600
-o "\tcbexternal@job@name.png"
"\tcbexternal@job@name.pdf"
14
}
\makeatother

\begin{document}

\begin{exgenealogypicture}[!]{export} [template=symbol nodes]
parent{
g{male}
insert{gtrparent4}

}
\end{exgenealogypicture}

\end{document}

e If the document above is compiled with the --shell-escape permission, all externalized
graphics (here: one) are converted to PNG automatically.

o Replace "mutool" by an appropriate adaption (possibly with path) for your system.

o Adapt -r 600 to get larger or smaller pixel images. It defines the dots per inch resolution.

o Note that this is a hack of internals of tcolorbox. This hack may become useless in the
future. Especially, for a single image, the standalone package should be preferred.

54

Genealogy Tree Macros

3.1 Creating a Genealogy Tree

\genealogytree [(options)]1{(tree contents)}

This is the main genealogy tree drawing macro of the package. The (tree contents) has to
obey to the tree grammar rules documented in Chapter 4 on page 63.

The (options) control how the drawing is done. These (options) are pgf keys with the key
tree path /gtr/ and they are described in the following.

The actual drawing is done with help of the TikZ package. Therefore, every
\genealogytree has to be placed into a tikzpicture environment. It is possible to put
several \genealogytree macros into the same tikzpicture and interconnect them.

\begin{tikzpicture}
\genealogytree[template=signpost]
{
parent{
g[male]{proband}
c[female] {sister}
c[male]{brother} | | |
plmale]{father}
plfemale] {mother}
} proband sister brother

father mother

}
\end{tikzpicture}

Detailed information about the genealogy tree grammar is found in Chapter 4 on page 63.
The short version is that a genealogy tree can have three types of nodes:
e c nodes are child nodes to a family,
e p nodes are parent nodes to a family,
e g nodes are usually child nodes to one family and parent nodes another family or even
several families. Here, g can be memorized as genealogy node.
A family is a set of parent and child nodes which has to contain exactly one genealogy node
(g node). All nodes of a family are interconnected with an edge set. In contrast to ordinary
tree structures where an edge connects one node to another node, here, an edge connects a
node to a family.
A genealogy tree can have following types of families:
e parent: A parent family may contain other parent families. Trees with this construc-
tion grow into ancestor direction.
e child: A child family may contain other child families or union families. Trees with
this construction grow into descendant direction.
e union: A union ties a second child-type family to a g node as parent of this family.
e sandclock: A sandclock connects ancestors and descendants starting from a single
proband.

95

\begin{tikzpicture}

\genealogytree[template=signpost]

{
parent{
g[male] {proband}
c[female]{sister}
c[male]{brother}
parent{
glmale]{father}
p[male]{grandfather}
plfemale] {grandmother}
}
plfemale] {mother}
}
}
\end{tikzpicture}

\genealogytreeinput [(options)]{(file name)}

grandfather

grandmother

—

father mother

proband

sister brother

Uses the content of the file denoted by (file name) to create a \genealogytree " with
the given (options). See Section 15.1 on page 357 for the file of the following example.

\begin{tikzpicture}

\genealogytreeinput [template=signpost] {example.option.graph}

\end{tikzpicture}

Grandpa
Smith
* 1949

Grandma
Smith
* 1952

Grandpa
Doe
%* 1955

Grandma
Doe
* 1956

0

—

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles

* 2008 * 2010 *2014

o6

\begin{genealogypicture} [(options)]
(tree content)
\end{genealogypicture}
'P-55 inside a tikzpicture. For
This environment allows more

This is a shortcut combination of one \genealogytree
(options) and (tree contents) see \genealogytree "%,
compact source code, but one cannot combine several trees and adding additional TikZ
commands has to be done by /gtr/tikzpicture "4 or /gtr/after tree 119,

\begin{genealogypicture}
[template=signpost] father mother
parent{
g[male] {proband}
c[female] {sister} | |
c[male]{brother} | | |
plmale]{father}

plfemale] {mother}
} proband sister brother

\end{genealogypicture}

\begin{exgenealogypicture} [(ezternalization options)1{{name)} [{options)]
(tree content)

\end{exgenealogypicture}
This is an externalized version of genealogypicture using the external library of the
package tcolorbox [4]. The picture is drawn by automatic compilation of an external file
denoted by (name) (usually prefixed by a directory or string). Afterwards, the created pdf
image is included into the main document. As long as the (tree contents) and the (options)
are not changed, the external file is not compiled again which saves overall compilation
time. The process can be controlled by (externalization options), see [4].
For a detailed application example, see Section 2.6 on page 49.

o7

3.2 Using Tree Options

\gtrset{(options)}
Sets (options) for every following \genealogytree "% inside the current TEX group.
These (options) are pgf keys with the key tree path /gtr/ and they are described in
the following.

7 Setting options for the following
\gtrset{template=signpost}

\begin{tikzpicture}
\genealogytree father mother
{

parent{ | |
glmale]{proband}
c[female] {sister} | | |
c[male] {brother}
plmale]{father} proband sister brother
plfemale] {mother}
}
}
\end{tikzpicture}

Another important field of application for \gtrset is to create own styles for later usage.

% Setting options for the following
\gtrset{mytree/.style={
template=signpost,
box={colback=yellow!20},
edges={swing,no background,
foreground=yellow!50!black},

ias father mother

\begin{tikzpicture}
\genealogytree [mytree] / own style /’—___t:::::T:::::j___N\\
{

parent{
g[male] {proband}
c[female] {sister}
c[male]{brother}
plmale]{father}
plfemale]{mother}

proband sister brother

}
}
\end{tikzpicture}

\gtrkeysappto{(hook)}{(key list)}
Auxiliary macro which appends a (key list) (options) to a (hook) macro which may already
contain a key list.

\gtrkeysgappto{(hook)}{(key list)}
Auxiliary macro which globally appends a (key list) (options) to a (hook) macro which may
already contain a key list.

o8

3.3 Accessing Information inside Nodes

Inside the node content, there are several processing informations available which can be used
for debugging or steering the output. Also see Section 11.4 on page 265 for displaying these
values.

\gtrnodetype

Holds the node type g, p, or c.
\gtrnodeid

Holds the /gtr/id "2 value of the node.
\gtrnodenumber

Holds the internal node number.
\gtrnodefamily

Holds the internal family number this node belongs to.
\gtrnodelevel

Holds the tree level number this node belongs to.

\begin{tikzpicture}
\genealogytree[
template=signpost,
level size=2cm, type: p type: p
content interpreter content={ id: Jim id: 777
\begin{tabular}{e{}re{: }1e{}} number: 5 number: 6
family: 2 family: 2
type & \gtrnodetype\\ level: 2 level: 2
id & \gtrnodeid\\
number & \gtrnodenumber\\
family & \gtrnodefamily\\
level & \gtrnodelevell\
\end{tabular}} type: g type: p
o id: Bob id: 777
number: 4 number: 7
parent{ family: 2 family: 1
glmale,id=Abc]l{} level: 1 level: 1
c[female]l{}
cmalel{} | |
parentq{ | | |
glmale,id=Bob]l{}
id=Ji t : type: ¢ type: c
plmale,id=Jin]{} EE Rbe R 0 T
plfemalel{} number: 1 number: 2 number: 3
3 family: 1 family: 1 family: 1
plfemalel{} level: 0 level: 0 level: 0
}
}
\end{tikzpicture}

\gtrifnodeid{(true)}{(false)}

Expands to (true), if /gtr/id "7 %2 was set, and to (false) otherwise.
\gtrifgnode{(true)}{(false)}

Expands to (true), if the node type is g, and to (false) otherwise.
\gtrifcnode{(true)}{(false)}

Expands to (true), if the node type is ¢, and to (false) otherwise.
\gtrifpnode{(true)}{(false)}

Expands to (true), if the node type is p, and to (false) otherwise.

99

\gtrifroot{(true)}{(false)}
Expands to (true), if the node is the root node of a parent tree or of a child tree, and to
(false) otherwise. For a sandclock tree, it expands always to (false).

\gtrifleaf{({true)}{(false)}
Expands to (true), if the node type is ¢ or p or if the node is the root node of a parent tree
or of a child tree, and to (false) otherwise. Note that (false) is set for all g nodes with the
root node as an exception, even if the node does not have a parent or a child. Also note
that a root node is intentionally considered to be a leaf also.

\gtrifchild{(true)}{(false)}

Expands to (true), if the node type is c or is g in a parent family or is g but not root in a
child family, and to (false) otherwise.

\gtrifparent{(true)}{(false)}
Expands to (true), if the node type is p or is g in a child family or is g but not root in a
parent family, and to (false) otherwise.

\gtrifleafchild{({true)}{(false)}
Expands to (true), if \gtrifleaf and \gtrifchild are both true, and to (false) otherwise.

\gtrifleafparent{(true)}{(false)}
Expands to (true), if \gtrifleaf and \gtrifparent are both true, and to (false) otherwise.

\begin{tikzpicture}

\genealogytree[

template=tiny boxes,

box={code={/

\gtrifroot{\tcbset{colback=red!50}}{/
\gtrifleafparent{\tcbset{colback=blue!50}}{/
\gtrifleafchild{\tcbset{colback=green!50}}{}/

Y

% i
i Q.

child{
g-p-c-
child{g-p-c-c-
union{p-c-c-
child{g-p-c-c-}
child{p-g-p-c-c-2}
}
}
child{g-p-c-c-c-}
}
}
\end{tikzpicture}

60

3.4 Auxiliary Tools

N 2020-06-08 \gtrautosizebox{(width)}{(height)}{({contents)}
N 2020-06-08 \gtrautosizebox*{(width)}{(height)}{(contents)}

Puts the (contents) into a horizontal box and resizes this box to fit into a rectangular frame
of given (width) and (height). The resizing keeps the aspect ratio intact. The star (*)
variant does shrinking only and keeps small boxes unchanged.

If (width) is missing or is not greater than Opt, then only the (height) is considered for

scaling.

If (height) is missing or is not greater than Opt, then only the (width) is considered for
scaling.

If (width) and (height) are both missing or both are not greater than Opt, the box is kept
unscaled.

\gtrautosizebox{10mm}{10mm}{AA}
\gtrautosizebox{5mm}{10mm}{BB}
\gtrautosizebox{10mm}{5mm}{CC}
\gtrautosizebox{}{10mm}{DD}
\gtrautosizebox{10mm}{}{EE}
\gtrautosizebox{}{}{FF}
\gtrautosizebox*{10mm}{10mm}{GG}
\gtrautosizebox*{3mm}{3mm}{HH}

AA s CC DD EE rr ca w

N 2020-06-08 \begin{autosizetikzpicture} [(options)]{{width)}{(height)}
(environment content)
\end{autosizetikzpicture}
N 2020-06-08 \begin{autosizetikzpicturex*}[(options)]{(width)}{(height)}
(environment content)
\end{autosizetikzpicture*}

A tikzpicture environment with given TikZ (options) is put into \gtrautosizebox or
\gtrautosizebox* with given (width) and (height).

\begin{autosizetikzpicture}{lcm}{1lcm}
\filldraw[red] (0,0) circle (5cm);
\end{autosizetikzpicture}

\begin{autosizetikzpicture}{icm}{1lcm}
\filldraw[blue] (0,0) circle (imm);
\end{autosizetikzpicture}

\begin{autosizetikzpicturex}{lcm}{lcm}
\filldraw[cyan] (0,0) circle (5cm);
\end{autosizetikzpicturex}

\begin{autosizetikzpicture*}{lcm}{1cm}
\filldraw[green] (0,0) circle (imm);
\end{autosizetikzpicturex}

61

62

Graph Grammar

4.1 Graph Structure

In graph theory, a graph is defined by a set of e
vertices (or nodes) and a set of edges connect-

ing these vertices. A general graph structure \
would certainly allow to depict genealogy data, e,@
but building and displaying such a general graph a

is not supported by this KTEX package. @

An ordinary tree structure is a specialized (di-
rected) graph which has a root node as starting
point. Every node may have one or more descen-

dant nodes. In this relationship, the first node is
called parent and the second is called child. Such
tree structures are heavily used for many appli-
cations. Also, there exist excellent IXTEX pack-

ages to display such structures. Such tree struc- D
tures can also be used for several kinds of ge-
nealogy type diagrams, but, by definition, they
miss the core element of genealogy: the family
consisting of two parents and several childs.

The graph structure used by the genealogytree
package is intended to put the family as a set of
parent and child nodes in the foreground. Every
family is allowed to have more than one parent L‘;l_‘

M
——
1

and more than one child. The interconnection
between the parent and child nodes of a family

is not considered to be bilateral between pairs of

nodes, but to be multilateral between all nodes

of the family. From the idea, a node is connected L
not to another node, but to one or more fami- D
lies. Still, there apply strong restrictions on the
set of possible graphs, because graphs have to
be reasonable processable and presentable. The
restrictions are realized by the following graph
grammar. In the following, the resulting graphs
are called genealogy trees.

o}

B
——
Q

I

Fll R GI||H

CHE

A family is a set of parent and child nodes which has to contain exactly one gemealogy node

63

(g node). Therefore, a family can have three types of nodes:
e c nodes are child nodes to a family, see Section 4.6 on page 73,
e p nodes are parent nodes to a family, see Section 4.7 on page 73,

e g nodes are usually child nodes to one family and parent nodes another family or even
several families, see Section 4.8 on page 73.

A genealogy tree can have following types of families:

e parent: A parent family may contain other parent families. Trees with this construction
grow into ancestor direction, see Section 4.2 on page 65,

e child: A child family may contain other child families or union families. Trees with this
construction grow into descendant direction, see Section 4.3 on page 67,

e union: A wunion ties a second child-type family to a g node as parent of this family, see
Section 4.4 on page 69,

e sandclock: A sandclock connects ancestors and descendants starting from a single
proband, see Section 4.5 on page 71.

As will be documented on the following pages, the graph input data is strongly hierarchically
organized. Each element is allowed to have specific sub-elements. The starting point is the root
element which is the top element inside \genealogytree "I °°. The root of a parsable graph is
one of the following:

o a parent (for ancestor graphs), see Section 4.2 on the facing page,
o a child (for descendant graphs), see Section 4.3 on page 67,

o a sandclock (for mixed ancestor/descendant graphs), see Section 4.5 on page 71.

64

4.2 Subgraph ’'parent’

A parent subgraph is a family where the g node acts as a child. This family may have arbitrary
child and parent leaves. Also, this family may have arbitrary parent subgraphs.

Syntax for a ’parent’ subgraph

parent [(parent options)]{

g[(node options)]{({node content)?} mandatory; exactly once

c[(node options)1{(node content)} optional; zero or many times
pL(node options)]1{(node content)} optional; zero or many times
parent [(parent options)]1{({subtree content)} optional; zero or many times
input{(file name)} optional; zero or many times
insert{(csname)} optional; zero or many times

3

P

g’ 'c’, 'p’, ‘parent’, “input’ may appear in arbitrary order.

\.

The optional (parent options) can be settings for the current family or the whole subgraph. See
Chapter 5 on page 77 and especially Section 5.6 on page 104 and Section 5.7 on page 107 for
feasible options.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={pA}{box={colback=red!20!whitel}}]

{
parent{
c[id=pB]l{B\\(child)}
glid=pA]l{A\\ (proband)}
c[id=pCI1{C\\(child)}
c[id=pD]{D\\(child)}
plid=pEI{E\\ (parent)}
plid=pF]1{F\\ (parent)}
}
}
\end{tikzpicture}
E F
(parent) (parent)
| |
| | | |
B A C D
(child) (proband) (child) (child)

65

\gtrparserdebug "I ?°" can help to detect structural errors. Here, we get:

\gtrparserdebug{
parent{

c[id=pBl{B\\(child)}
g[id=pA]1{A\\ (proband) }
c[id=pCIl{C\\(child)}
c[id=pD]{D\\(child)}
plid=pE]{E\\ (parent)}
plid=pF]{F\\ (parent)}

Genealogytree Parser Debugger

Start: Parent Family 1, Level 1

Child: Individual 1, Family 1, Level 0
Options: id=pB
Content: B\\(child)

Child: Individual 2, Family 1, Level 0
Options: id=pA
Content: A\\ (proband)

Child: Individual 3, Family 1, Level 0
Options: id=pC
Content: C\\(child)

Child: Individual 4, Family 1, Level 0
Options: id=pD
Content: D\\ (child)

Parent: Individual 5, Family 1, Level 1
Options: id=pE
Content: E\\(parent)

Parent: Individual 6, Family 1, Level 1
Options: id=pF
Content: F\\ (parent)

End: Parent Family 1, Level 1

End of Genealogytree Parser Debugger

. Y W V. v .

66

4.3 Subgraph ’child’

A child subgraph is a family where the g node acts as a parent. This family may have arbitrary
child and parent leaves. Also, this family may have arbitrary child and union subgraphs.

Syntax for a ’child’ subgraph

child [(child options)]{
g[(node options)]{{node content)?} mandatory; exactly once
c[(node options)1{(node content)} optional; zero or many times
pL(node options)]1{(node content)} optional; zero or many times
child[(child options)]1{(subtree content)} optional; zero or many times
union [(union options)]{(subtree content)} optional; zero or many times
input{(file name)> optional; zero or many times
insert{(csname)} optional; zero or many times

}

g’y ¢’ p’, Cchild’, “union’, “input’ may appear in arbitrary order.

The optional (child options) can be settings for the current family or the whole subgraph. See
Chapter 5 on page 77 and especially Section 5.6 on page 104 and Section 5.7 on page 107 for
feasible options.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={pA}{box={colback=red!20!whitel}}]
{
child{
g[id=pA]{A\\ (proband) }
plid=pB]{B\\(parent)}
c[id=pCl{C\\(child)}
c[1d=pD]{D\\(child)}
c[id=pE]{E\\(child)}
}
}
\end{tikzpicture}

A B
(proband) (parent)

(child) (child) (child)

67

»P. 250

\gtrparserdebug can help to detect structural errors. Here, we get:

\gtrparserdebug{
child{
glid=pA]l{A\\ (proband)?}
plid=pBl1{B\\ (parent)}
c[id=pCI1{C\\(child)}
c[id=pD]{D\\(child)}
c[id=pE]{E\\(child)}

Genealogytree Parser Debugger

Start: Child Family 1, Level 0

Parent: Individual 1, Family 1, Level 0
Options: id=pA
Content: A\\ (proband)

Parent: Individual 2, Family 1, Level 0
Options: id=pB
Content: B\\ (parent)

Child: Individual 3, Family 1, Level -1
Options: id=pC
Content: C\\(child)

Child: Individual 4, Family 1, Level -1
Options: id=pD
Content: D\\ (child)

Child: Individual 5, Family 1, Level -1
Options: id=pE
Content: E\\ (child)

End: Child Family 1, Level 0

End of Genealogytree Parser Debugger

L N A AN A AW

68

4.4 Subgraph ’union’

A union subgraph is a family without a g node. The g node (parent) is inherited from an
embedding child family. A union family may have arbitrary child and parent leaves. Also, this
family may have arbitrary child subgraphs.

Syntax for a ’union’ subgraph

union [(union options)]{
c[(node options)]1{(node content)} optional; zero or many times
pL({node options)]1{(node content)?} optional; zero or many times
child[(child options)]{(subtree content)} optional; zero or many times
input{(file name)} optional; zero or many times
insert{(csname)} optional; zero or many times

}

c’, p’, child’, input’ may appear in arbitrary order.

The optional (child options) can be settings for the current family or the whole subgraph. See
Chapter 5 on page 77 and especially Section 5.6 on page 104 and Section 5.7 on page 107 for
feasible options. As a special case for unions, note that the g node of the embedding child
family will not be affected by these options.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={pA}{box={colback=red!20!white}}]
{
child{
plid=pBl1{B\\ (parent)}
glid=pA]{A\\ (proband) }
c[id=pCl{C\\(child)}
union{
plid=pD]{D\\ (parent)}
c[id=pE]{E\\(child)}
}
}
}
\end{tikzpicture}

B A D
(parent) (proband) (parent)

[

(child) (child)

69

\gtrparserdebug

" 7250 can help to detect structural errors. Here, we get:

\gtrparserdebug{
child{

plid=pBl{B\\(parent)?}
g[id=pA]{A\\ (proband) }
c[id=pCI1{C\\(child)}
union{
p[id=pD]1{D\\ (parent)}
c[id=pE]{E\\(child)}
}

Genealogytree Parser Debugger

Start: Child Family 1, Level 0

Parent: Individual 1, Family 1, Level 0
Options: id=pB
Content: B\\(parent)

Parent: Individual 2, Family 1, Level 0
Options: id=pA
Content: A\\ (proband)

Child: Individual 3, Family 1, Level -1
Options: id=pC
Content: C\\(child)

N A A 4

[sJ =] HEH(L“L

Start: Union Family 2, Level 0

Parent: Individual 4, Family 2, Level 0
Options: id=pD

Content: D\\ (parent)

Child: Individual 5, Family 2, Level -1
Options: id=pE

Content: E\\(child)

End: Union Family 2, Level 0

End: Child Family 1, Level 0

End of Genealogytree Parser Debugger

70

4.5 Subgraph 'sandclock’

A sandclock subgraph is a family without a g node. The g node (child) is inherited from an
embedded child family. A sandclock family may have arbitrary child and parent leaves. Also,
this family must have at least one child subgraph and may have arbitrary parent subgraphs.

Syntax for a ’sandclock’ subgraph

sandclock [(sandclock options)]{
c[(node options)]1{(node content)}
pL(node options)1{(node content)}
child[(child options)]1{(subtree content)}
parent [(parent options)]{{subtree content)}
input{(file name)}

optional; zero or many times
optional; zero or many times
mandatory; one or many times
optional; zero or many times
optional; zero or many times

insert{(csname)} optional; zero or many times
}
¢’y p’, child’, parent’, “input’ may appear in arbitrary order.
\begin{tikzpicture}

\genealogytree[template=signpost,

{

}

\end{tikzpicture}

c[id=pBl{B\\(child)}
glid=pAl{A\\(proband)?}
c[id=pb]{b\\(child)}

plid=pCl{C\\(parent)}

glid=pD]{D\\ (parent)}

options for node={pA}{box={colback=red!20!white}}]

clid=pal{a\\(child)}
p[id=pX1{X\\ (partner)}

c[id=pE]{E\\(child)}

(parent)

.

C D E
(parent) (parent) (child)
B A X
(child) (proband) (partner)

]

a
(child)

b
(child)

71

pl[id=pF1{F\\ (parent)}

\gtrparserdebug{

pl[id=pF]1{F\\ (parent)}

sandclockd{
c[id=pB]l{B\\(child)}
child
{
g[id=pA] {A\\ (proband) } cl[id=pal{a\\(child)}
c[id=pb]{b\\ (child)} plid=pX]1{X\\ (partner)}
}
pl[id=pCl{C\\ (parent)}
parentq{
g[id=pD] {D\\ (parent)} c[id=pE]{E\\ (child)}
}
}
}
Genealogytree Parser Debugger
Start: Sandclock Family 1, Level 1
Child: Individual 1, Family 1, Level 0
Options: id=pB

Content: B\\(child)

[~ I |

[~]

Start: Child Family 2, Level 0

Parent: Individual 2, Family 2, Level 0
Options: id=pA

Content: A\\ (proband)

Child: Individual 3, Family 2, Level -1
Options: id=pa

Content: a\\ (child)

Child: Individual 4, Family 2, Level -1
Options: id=pb
Content: b\\ (child)

Parent: Individual 5, Family 2, Level 0
Options: id=pX
Content: X\\ (partner)

End: Child Family 2, Level 0

Parent: Individual 6, Family 1, Level 1
Options: id=pC
Content: C\\(parent)

B B B EE

<]

Start: Parent Family 3, Level 2
Child: Individual 7, Family 3, Level 1
Options: id=pD

Content: D\\ (parent)

Child: Individual 8, Family 3, Level 1
Options: id=pE

Content: E\\(child)

Parent: Individual 9, Family 3, Level 2
Options: id=pF

Content: F\\ (parent)

End: Parent Family 3, Level 2

End: Sandclock Family 1, Level 1

End of Genealogytree Parser Debugger

72

4.6 Node 'c’

The c (child) node is a leaf node which is child to a family.

Syntax for a ’c’ node

c[(node options)1{{node content)}

For the optional (node options), see Chapter 5 on page 77 and especially Section 5.5 on page 95.

The (node content) can be any text to be displayed inside the node. This (node content) can also
be processed before displaying, see Chapter 6 on page 137 and especially Chapter 7 on page 161
for database processing. Also, the (node content) can be completely ignored for processing. In
this case, one can use c{} or even shorter c(token) for the node.

\begin{genealogypicture}[e
template=formal graph, ny n9
content interpreter content= h|—‘ Hl—‘
{n_{\gtrnodenumber}}, | | | I |
]
n N4 n n niq ni
child{ g-p-c-c- 3 > 6 >

child{ p-g-

child{ p-g-c-c-c- }

c-c- nz || ns | |12 |13
c—Cc—
} ng | [nio| |n1

\end{genealogypicture}

4.7 Node ’p’

The p (parent) node is a leaf node which is parent to a family.

Syntax for a ’p’ node

p[(node options)1{(node content)}

For the optional (node options), see Chapter 5 on page 77 and especially Section 5.5 on page 95.
For (node content), see Section 4.6 on page 73.

4.8 Node 'g’

The g (genealogy) node is an interconnecting individual which is member of at least two families.
For one family it is a child, for another one it is a parent.

Syntax for a ’g’ node

g[(node options)1{(node content)}

For the optional (node options), see Chapter 5 on page 77 and especially Section 5.5 on page 95.
For (node content), see Section 4.6 on page 73.

73

4.9 Data ’input’

Feasible subgraphs may be read from external files using the input command at places where
such subgraphs are expected.

Syntax for data ’input’

input{(file name)}

The following example reads a parent subgraph from a file. See Section 15.1 on page 357 for
the file contents.

\begin{tikzpicture}
\genealogytree [template=signpost]
{
parentq{
g{Puppy}
input{example.option.graph}
parent
{
glfemale] {Nanny}
plmale]{Pa}
plfemale]{Ma}
}
}
}
\end{tikzpicture}

Grandpa
Smith
* 1949

Grandma
Smith
* 1952

Grandpa
Doe
* 1955

Grandma
Doe
* 1956

o

—

John Smith Jane Doe Uncle Harry Pa Ma
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 %2010 * 2014 Nanny
Puppy

74

4.10 Control Sequence ’insert’

Feasible subgraphs may be inserted from control sequences using the insert command at places
where such subgraphs are expected.

Syntax for data ’insert’

insert{(csname)}

(csname) is the name of a control sequence without the leading backslash '\ This control
sequence has to be a parameterless macro whose replacement text is a feasible subgraph.

The following example creates such a macro \mytest:

\newcommand{\mytest}{
parent{ g{x_1}
parent{ g{x_2} p{x_3} p{x_4} }
parent{ g{x_5} p{x_6} p{x_7} }
1}

\begin{tikzpicture}
\genealogytree[template=formal graphl]

parent{
g{a_1}
parentq{
g{a_3}
insert{mytest}
insert{mytest}
}
insert{mytest}
}
}
\end{tikzpicture}

l$3! !$4| lxﬁl l$7| l$3| |$4| ZTe | | X7
i i
T2

xIs xTo xIs I3 T4 Te X7

I I x2 Iy

as x1

_‘
_‘

a

75

76

Option Setting

»P. 55

For the (options) in \genealogytree , genealogypicture 57 and \gtrset "7 58 keys
with pgf syntax can be applied as documented in the following. The key tree path /gtr/ is not
to be used inside these macros. It is easy to add your own style keys using the syntax for pgf

keys, see [5].

Some of the following examples use a standard graph file which is documented in Section 15.1
on page 357.

5.1 Option Priorities

This section can be skipped on first reading. Option priorities are more or less natural. This
section can be consulted later in case of doubt.

Options for the graph drawing can be set at several spots inside the code using the pgf key-value
syntax:

« as parameter of \gtrset "% for setting (global) options,

»P. 55

»P.57

e as optional parameter of \genealogytree or genealogypicture ,

e as optional parameter of a family identifier like parent or child,
e as optional parameter of a node identifier like g, p, or c.

Depending on where the options are given, they are treated with different priority. If an option
is given several times with the same priority, the last one wins.

P97 an option setting with higher priority overwrites an

o For options like /gtr/pivot
option setting with lower priority.

P98 "an option setting with higher appends to an option setting

" P98 options which are not overwritten, stay active.

o For options like /gtr/box
with lower priority. Thus, /gtr/box

77

5.1.1 Option Priorities for Nodes

Example: Priorities for setting box options to a node with id=A

\gtrsetq{
... J priorities identical to options for \genealogytree
}
\genealogytree[
options for node={A}{box={...}}, % priority (1) highest
options for family={fam_a}{box={...}}, % priority (5)
options for subtree={fam_a}{box={...}}, 7% priority (9)
level 2/.style={
node={box={...}}, 7% priority (3)
family={box={...}}, 7% priority (7)
subtree={box={...}}}, % priority (11)
level/.code={\ifnum#i=2\relax\gtrset{
node={box={...}}, 4 priority (4)
family={box={...}}, % priority (8)
subtree={box={...}}}\fi}, 7% priority (12)
box={...}, /% priority (13) lowest
1%
{
parent[id=fam_a, % family with id ’fam_a’
family={box={...}}, 7% priority (6)
subtree={box={...}}, % priority (10)
]
{
plid=A, % node with id ’A’
box={...}]{A} % priority (2)
}
}
The priorities for options regarding nodes
1. /gtr/options for node ™% has the highest priority. The node has to be identi-
fied by a given /gtr/id "2, /gtr/options for node % should be given using
\gtrset "7 °® or as option of \genealogytree "I .
2. Optional parameter of a node identifier like g, p, or c.
3. Option /gtr/node "% inside /gtr/level n 110,
4. Option /gtr/node "% inside /gtr/level "I 109,
5. /gtr/options for family !9 the family has to be identified by a given
/gtr/id P92,
6. /gtr/family " 10% as optional parameter of a family identifier like parent or child.
7. Option /gtr/family " 1% inside /gtr/level n 110,
8. Option /gtr/family " 19 inside /gtr/level " 109,
9. /gtr/options for subtree " !07; the subtree has to be identified by a given
/gtr/id P92,
10. /gtr/subtree " 198 as optional parameter of a family identifier like parent or
child.
11. Option /gtr/subtree 1% inside /gtr/level n 110,
12. Option /gtr/subtree 0% inside /gtr/level "7 109,
13. Setting as parameter of \genealogytree "% or \gtrset "% has the lowest pri-

ority.

78

5.1.2 Option Priorities for Families

Example: Priorities for setting edges options to a family with id=fam_a

\gtrsetq{
... J priorities identical to options for \genealogytree
}
\genealogytree[
options for family={fam_a}{edges={...}}, % priority (1) highest
options for subtree={fam_al}{edges={...}}, % priority (5)
level 2/.style={family={edges={...}} 7% priority (3)
subtree={edges={...}}}, Z priority (7)
level/.code={\ifnum#i1=2\relax/
\gtrset{family={edges={...}}, % priority (4)
subtree={edges={...}}} Z priority (8)
\fi},
edges={...}, % priority (9) lowest
17
{
parent[id=fam_a, % family with id ’fam_a’
family={edges={...}}, % priority (2)
subtree={edges={...}}, Z priority (6)
]
{
}
}
The priorities for options regarding families
1. /gtr/options for family ™ 10% has the highest priority. The family has to be
identified by a given /gtr/id 792, /gtr/options for family ' !0 should be
given using \gtrset ~7 %% or as option of \genealogytree "7,
2. Optional /gtr/family " 19 parameter of a family identifier like parent or child.
3. Option /gtr/family "' 1'% inside /gtr/level n " 110,
4. Option /gtr/family "™ 10% inside /gtr/level ~F 109,
5. /gtr/options for subtree !07; the subtree has to be identified by a given
/gtr/id P92,
6. Optional /gtr/subtree 1% parameter of a family identifier like parent or child.
7. Option /gtr/subtree " 198 inside /gtr/level n 110,
8. Option /gtr/subtree " 198 inside /gtr/level " 109,
9. Setting as parameter of \genealogytree ' or \gtrset " has the lowest pri-

ority.

79

5.2 Graph Growth Setting (Time Flow)

A genealogy tree may grow in one of four directions. This /gtr/timeflow setting is valid for
the whole graph, but two graphs with different growth setting may be joined together.

/gtr/timeflow=(direction) (no default, initially down)

The /gtr/timeflow key controls the growing direction of a given graph. It is always used
to place the generations according to this value. If the (direction) is set to down, a child
graph will grow down, but a parent graph will grow up. Feasible values are:

e down

e up

o left

e right

timeflow=down

\begin{tikzpicture}

\genealogytree [template=signpost,timeflow=down]
{input{example.option.graph}}

\node at ([xshift=4cm]GmDo1956) (past) {Past};

\draw[very thick,->] (past) -- +(0,-2) node[below] {Future};

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma

Smith Smith Doe Doe Past

* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry Future

%* 1980 * 1982 * 1987

Arthur Berta Charles
* 2008 * 2010 * 2014

See Section 15.1 on page 357 for the included example graph file.

80

timeflow=up

\begin{tikzpicture}

\genealogytree [template=signpost,timeflow=up]
{input{example.option.graph}}

\node at ([xshift=4cm]GmDo1956) (past) {Past};

\draw[very thick,->] (past) -- +(0,2) node[above] {Future};

\end{tikzpicture}
Arthur Berta Charles
* 2008 * 2010 * 2014
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987 Future
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe Past
* 1949 * 1952 * 1955 * 1956
timeflow=left
\begin{tikzpicture}

\genealogytree[template=signpost,timeflow=1left,node size=1.2cm,level size=3cm]
{input{example.option.graph}}

\node at ([yshift=-1.5cm]GmDo1956) (past) {Pastl};

\draw [very thick,->] (past) -- +(-2,0) node[left] {Future};

\end{tikzpicture}
a '
Grandpa Smith
P %* 1949
*r2061§ 1| John Smith
* 1980
(Grandma Smith
Baia * 1952
%2010 | .
\
Gharl | Jane Doe Grandpa Doe
arles - * 1955
* 2014 IR L
Uncle Harry Grandma Doe
* 1987 * 1956

Future €$——— Past

81

timeflow=right

\begin{tikzpicture}

\genealogytree[template=signpost,timeflow=right,node size=1.2cm,level size=3cm]
{input{example.option.graph}}

\node at ([yshift=-1.5cm]GmDo1956) (past) {Pastl};

\draw[very thick,->] (past) -- +(2,0) nodel[right] {Future};

\end{tikzpicture}
Grandpa Smith
* 1949 Arth
John Smith | *r2tOél§
r * 1980 |
Grandma Smith r "
*1952] Berta
. * 2010
Grandpa Doe Jane Doe Charl
* 1955 gL — aries
L * 1982) *2014
.
Grandma Doe Uncle Harry
* 1956 * 1987
~ v

Past —— Future

82

5.3 Graph Geometry

The following geometry settings are usually set for the whole graph, but they can be set for
every /gtr/level "7 109 separately. Inside a level, they are fixed.

/gtr/level distance=(length) (no default, initially 5mm)
The given (length) defines the distance between two following generations. This distance
can be set in dependency of the /gtr/level 109,

Ci||C2||Cs

} distance 5mm

The /gtr/level distance can be specified for individual level numbers, e.g.

\gtrsetq{
level 0/.style={level distance=5mm},
level -1/.style={level distance=10mm}

}
Py |P2
= L — } distance 5mm (level 0)
Ci||C| | X || Cs

} distance 10mm (level —1)

G| |G| |Gs

83

/gtr/level size=(length) (no default, initially 3.5cm)

The given (length) defines one dimension of a node.
o If /gtr/timeflow "7® is up or down, then /gtr/level size sets the height of a node.
o If /gtr/timeflow % is left or right, then /gtr/level size sets the width of a
node.
The /gtr/level size be set in dependency of the /gtr/level 109,

P || P } level size
Ci|1Ca||Cs
\gtrsetq{
level 0/.style={level size=15mm},
}
P || P level size
Ci||C2||Cs

Some actual node implementations may not respect the given /gtr/level size. Note that the
placement algorithm ignores deviations and assumes that the restrictions hold.

84

/gtr/node size=(length) (no default, initially 2.5cm)
The given (length) defines one dimension of a node.
o If /gtr/timeflow "1 is up or down, then /gtr/level size ! ® sets the width of
a node.
o If /gtr/timeflow 80 is left or right, then /gtr/level size ! sets the height
of a node.
The /gtr/node size can be set in dependency of the /gtr/level "™ 199, Note that the
/gtr/node size may be ignored by nodes boxes which set the width individually or de-
pending from the content width.

Ci|]|Ca|]Cs

[E—;

node size

\gtrsetq{
level 0/.style={level size=15mm},
}

[01[02 03]

node size

If the size should be changed for an individual node, use /gtr/box %% instead of
/gtr/node size:

c[id=A,box={width=15mm}]{C_3}

P,

Ci]|C2 Cs

width

Some actual node implementations may not respect the given /gtr/node size. The placement
algorithm accepts deviations and calculates positions accordingly.

85

/gtr/node size from=(minlength) to (mazlength) (no default, initially 2.5cm to 2.5cm)

Sets the /gtr/node size % in a flexible way ranging from (minlength) to (mazlength).
The actual size of a node is determined by the node content. A node will be enlarged up
to (maxlength) before the content font size is allowed to shrink. Note that the /gtr/node
size from may be ignored by nodes boxes which set the width individually or depending
from the content width.

/gtr/child distance in parent graph=(length) (no default, initially 1mm)

The given (length) defines the minimum distance of two children of a family in a parent
graph. The /gtr/child distance in parent graph can be set in dependency of the
/gtr/level "7 109 For an individual node, this distance can be overruled by setting
/gtr/distance "1 9%,

\genealogytree[

child distance in parent graph=5mm]
{
parent{
p{P_1}
p{P_2}
gl{C_1%}
cl[ia=A1{a}
c[id=B1{B}

P1| P
1
1

C'll A lBl

——

child distance

86

/gtr/child distance in child graph=(length) (no default, initially 2mm)

The given (length) defines the minimum distance of two children of a family in a child
graph. The /gtr/child distance in child graph can be set in dependency of the

/gtr/level "7 109 For an individual node, this distance can be overruled by setting
/gtr/distance "1 9%,

\genealogytree[

child distance in child graph=5mm]
{
child{
g{P_1}
p{P_2}
c{C_1}
cl[id=A1{a}
c[id=B]1{B}

o
1
o

child distance

5

/gtr/child distance=(length) (no default, style)

This is an abbreviation for setting /gtr/child distance in parent graph %0 and
/gtr/child distance in child graph to the same (length).

87

/gtr/parent distance in parent graph=(length) (no default, initially 2mm)

The given (length) defines the minimum distance of two parents of a family in a parent
graph. The /gtr/parent distance in parent graph can be set in dependency of the

/gtr/level "7 109 For an individual node, this distance can be overruled by setting
/gtr/distance "1 9%,

\genealogytree[

parent distance in parent graph=5mm]
{
parent{
plid=AT{A}
plid=B1{B}
g{C_1}
c{Cc_2}
c{C_3}

parent distance

——

’

A B

Ci||C2]]|Cs

88

/gtr/parent distance in child graph=(length) (no default, initially 1mm)

The given (length) defines the minimum distance of two parents of a family in a child
graph. The /gtr/parent distance in parent graph %% can be set in dependency of

the /gtr/level "7199 For an individual node, this distance can be overruled by setting
/gtr/distance "1 9%,

\genealogytree[

parent distance in child graph=5mm]
{
child{
glid=A1{A}
plid=B1{B}
c{C_1}
c{Cc_2}
c{C_3}

parent distance

——

’

A B

Ci||C2]]|Cs

/gtr/parent distance=(length) (no default, style)

This is an abbreviation for setting /gtr/parent distance in parent graph ' ® and
/gtr/parent distance in child graph to the same (length).

89

/gtr/further distance=(length) (no default, initially 3mm)

The given (length) defines the minimum distance of two nodes which are not parents or
children of the same family. The /gtr/further distance can be set in dependency of

the /gtr/level "7199 For an individual node, this distance can be overruled by setting
/gtr/distance 19,

\gtrsetq{
further distance=5mm

}

further distance

—

b A B Py P || P
=y T
P3 Cl P3 P, 4

Ci||C2|| Cs Cs||Cs]| A B1|Cs5||Cs

N—;

further distance

90

If /gtr/further distance % is set in level dependency, it is worth to note that this
distance is not used for the nodes on the specified layer but for joining the subtrees on
the specified layer. In the following example, the distances set on layer 1 and on layer 2
influence different nodes on layer 3.

\gtrset{
level 1/.style={further distance=10mm},
level 2/.style={further distance=5mm},

}
further distance (level 1)
further distance (level 2) further distance (level 2)
3 3 3 3 3 3 3 3
2 2 2 2

91

5.4 Identifiers

Identifiers play an important role for semi-automatic processing of graph data. Every node and
every family can be marked by an /gtr/id for later reference. If the graph data is exported or
generated by a tool, all nodes and families should be marked. This allows to manipulate the
graph without editing the generated data.

/gtr/id=(name) (no default, initially empty)

Every node and every family can be marked by a (name) using this option. This (name)
is used by /gtr/options for node %, /gtr/options for family 194 etc, to set
options for the specified node or family.

o The (name) should be unique inside the tikzpicture environment.

o A TikZ node (name) is automatically created for later usage.

child[id=family_al{ 7% family with id ’family_a’

plid=Al{Father} /% mode with id °A’

pl[id=B]l{Mother} /A mode with id ’B’

c[id=C]{Child} 7% mode with id °C’
}

For example, let us consider the Smith-Doe graph used many times in this document, see Sec-
tion 15.1 on page 357. Using the identifiers, Jane Doe should be emphasized strongly. Without
specific manipulation, the graph data is depicted as follows:

\begin{tikzpicture}
\genealogytree[template=signpost]
{input{example.option.graph}}

\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

—

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles

% 2008 %2010 %2014

92

One could inspect the source code in Section 15.1 on page 357 to see the given identifiers. For a
large dataset, this may become inconvenient. A good alternative is to use /gtr/show id "' 2%
to overlay the depicted graph with all given /gtr/id "2 values.

\begin{tikzpicture}
\genealogytree [template=signpost,show id]
{input{example.option.graph}}

\end{tikzpicture}
randna [arnndma [Crandna] [Grandmn]
GpSm1949 GmSm1952 GpDo1955 GmDo1956
l * 1949 l * 1952 l * 1955 J l * 1956 J
Smith Doe

[l |

John1980 Jane1982 Harri9s7

SmitIhDoe

Arth2008 Bert2010 Char2014

~ LUuO J l ~ LUy J l ~ UL

Now, Jane Doe can be emphasized. Note that the id value Jane1982 is also a TikZ node and
can be used such.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={Jane1982}{box={colback=red!50},pivot},
options for node={Harr1987}{distance=3.5cm}]
{input{example.option.graph}}
\draw [decorate,decoration={brace,amplitude=5pt,mirror,raise=2pt},
line width=1pt,yshift=0pt] (Janel982.south east) -- (Janel982.north east)
node [align=center,right=9pt,midway,fill=yellow] {Most important\\ person};
\end{tikzpicture}

Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Most important Uncle Harry
* 1980 * 1982 person * 1987
Arthur Berta Charles
* 2008 * 2010 * 2014

93

/gtr/id prefix=(text) (no default, initially empty) N 2015-06-09

The given (text) is prefixed to every /gtr/id 92, This option is intended to be used as
part of an option list for a \genealogytree " ? or genealogypicture " °7. If not used
there, it will be set to empty by \genealogytree "I

\begin{tikzpicture}

\genealogytree[template=signpost,id prefix=xx:,show id]
{input{example.option.graph}}

\end{tikzpicture}

[Grandpa][Grandma] [Grandpa [Grandma,]
xx:GpSm1949 xx:GmSm1952 xx:GpDo1955| xx:GmDo1956

l * 1949 Jl * 1952 Jl * 1955 l * 1956 J

XX Smlth xx:Doe

xx John1980 xx Jane1982 xx Harr1987

XX SmlthDoe —I—‘

xx Arth2008 xx I;ert2010 XX: Char2014

N ZUUo N ZUu1L1v l N LUla J

/gtr/id suffix=(text) (no default, initially empty) N 2015-06-09

The given (text) is suffixed to every /gtr/id’ P.92
part of an option list for a \genealogytree "%
there, it will be set to empty by \genealogytree

. This option is intended to be used as

or genealogypicture " °7, If not used
~P.55

\begin{tikzpicture}

\genealogytree[template=signpost,id suffix=Qyy,show id]
{input{example.option.graphl}}

\end{tikzpicture}

[Grandna][Grandma] [Grandpa [Grandma,]
GpSm1949@yy GmSm1952Q@yy GpDo1955@yy| GmDo1956Qyy

l * 1949 J l * 1952 J l * 1955 l * 1956 J

Smith@ny DoeQ@yy

John1980@yy Jane1982©yy Harr1987©yy

~ LuOU ~ Lu0a ~ LU0

mlthDoe@yy —I—‘

Arth2008@yy Bert20 10Qyy Char20 14©yy

~ LauUo ~ auiu l ~ LU J

94

5.5 Node Options

U 2020-07-27 /gtr/options for node={(id list)}{(options)} (style, no default)

The given (options) are set for all nodes with /gtr/id ~" 92 values from the given (id list).
If an /gtr/id "7 92 value is not existing, the setting is silently ignored. The intended spot
for using /gtr/options for node is before \genealogytree "I or inside its option list.
Also see Section 5.1.1 on page 78.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={Arth2008,John1980}{/
box={interior style={top color=red!30,bottom color=red}}

1
{input{example.option.graph}}
\end{tikzpicture}
s D
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

Jane Doe Uncle Harry
* 1982 * 1987
Berta Charles
* 2010 *2014

U 2020-07-27 \gtrsetoptionsfornode{(id list)}{(options)}
N 2020-07-27 \getree_set_options_for_node:nn{(id list)}{(options)}
Identical to using /gtr/options for node.

95

/gtr/node={({options)} (style, no default)

The given (options) are set for all nodes within the current scope. This scope is primarily
intended to be a /gtr/level "71% or /gtr/level n ! 110 definition. For other spots,
where /gtr/node is not needed, it may be ignored or directly replaced by its content. Also
see Section 5.1.1 on page 78.

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={
node={box={interior style={top color=red!30,bottom color=red}}}
3
{input{example.option.graph}}
\end{tikzpicture}

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles

% 2008 %2010 * 2014

/gtr/distance=(length) (no default, initially -1sp)

A non-negative (length) replaces the default minimum distance to the preceding sibling.
The default settings are given by /gtr/child distance in parent graph % etc.

\begin{tikzpicture}
\genealogytree[template=signpost,options for node={GpDo1955}{distance=2cm}]
{input{example.option.graph}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956
John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987
Arthur Berta Charles
* 2008 * 2010 * 2014

96

/gtr/pivot=(value) (default both, initially none)

Using this option, a node can gain a pivot role in the graph construction.

Feasible values are
e none: no special treatment.

e child: pivot role as a child of a family. The node will be placed centered according

to its parents or its pivot parent.

e parent: pivot role as a parent of a family. The node will be placed centered according

to its children or its pivot child.
e both: pivot role as a child and as a parent.

A sequence of /gtr/pivot settings for ancestors or descendants can be used to emphasize
a certain lineage. In the following example, the nodes marked in red form such a lineage.

The green node is a pivot as a child.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for node={Bert2010,John1980,GpSm1949}{pivot,
box={interior style={top color=red!30,bottom color=red}}},
options for node={Janel1982}{pivot=child,box={colback=green!50}}]
{input{example.option.graph}}

\end{tikzpicture}
Grandma Grandpa Grandma
Smith Doe Doe
* 1952 %* 1955 * 1956
Jane Doe Uncle Harry
% 1982 %* 1987

Arthur Charles
% 2008 * 2014

97

/gtr/vox={(options)} (no default)

Passes the given (options) to the underlying /gtr/node processor "' '3%. Depending on
the selected processor, the (options) are usually tcolorbox options which describe how a
node box is drawn. If a processor is not based on the tcolorbox package, the (options)
can be different, e.g. TikZ options.

\begin{tikzpicture}
\genealogytree [template=formal graph,
options for node={node_B}{box={colback=green!50}},
1{7
child{
g[box={colback=red!50}]1{A}
plid=node_B]{B}
c{C} c{D} c{E}
}
}
\end{tikzpicture}

/gtr/box clear (no value)
/gtr/box settings are additive. To clear all box settings, use this option.
/gtr/node box=(options) (no default)
This is an abbreviation for placing /gtr/box inside /gtr/node %,
\begin{tikzpicture}

\genealogytree[template=formal graph,
level -1/.style={node box={colback=red!50}},

17

child{

g{A} p{B}

c{Ct c{D} c{E}

}
}
\end{tikzpicture}

All B
C D E

98

/gtr/family box=(options)

(no default)

This is an abbreviation for placing /gtr/box *" % inside /gtr/family " 19,
\begin{tikzpicture}
\genealogytree[template=formal graph
IR ¥4
child{
g{A} p{B}
child[family box={colback=red!50}]1{
g{C} p{a_1} c{a_2}
child{ g{a_3} p{a_4} c{a_5} c{a_6} }
¥
c{D} c{E}
}
}
\end{tikzpicture}
All B
I i
J I
D||E
aq
(4759 Qg
/gtr/subtree box=(options) (no default)
This is an abbreviation for placing /gtr/box "% inside /gtr/subtree 108,
\begin{tikzpicture}
\genealogytree[template=formal graph
7
child{
g{A} p{B}

child[subtree box={colback=red!50}]{
g{C} p{a_1} c{a_2}

child{ gf{a_3} p{a_4} c{a_5} c{a_6} }

}
c{D} c{E}
}
}
\end{tikzpicture}

GHG

99

/gtr/turn=(option) (default right, initially off)

This is a special /gtr/box "% style to rotate the content a node. Typically, all nodes of

a /gtr/level n 10 may be rotated together.
Feasible (option) values are:

o off: no rotation.

e right: rotation by 90 degrees.

e upsidedown: rotation by 180 degrees.

e left: rotation by 270 degrees.

\begin{tikzpicture}
\genealogytree [template=formal graph]{/
child{
glturn] {A}
p{B}
c[turn=left]{C} c{D} c{E}
}
}
\end{tikzpicture}

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={level size=3cm,node size from=1cm to 2cm,
node={turn,box={no shadow,drop fuzzy shadow southwestl}}}]
{input{example.option.graph}}

\end{tikzpicture}
r “ — —

g = o g
= = © Q
£ 2 a A
n o N 0 ©

<t 0 <0 Y
E=) < D la¥=)) g9
o, — g = — g~
Tx || 2% sx || Ex
g g b g
& 3 O

.
I,

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles
* 2008 * 2010 *2014

100

\begin{tikzpicture}

\genealogytree[template=signpost,
level 0/.style={level size=2cm,node size from=1cm to 2cm,
node={turn=left,box={no shadow,drop fuzzy shadow northeast}}}]

{input{example.option.graph}}
\end{tikzpicture}

Grandpa
Smith
* 1949

Grandma
Smith
* 1952

Grandma
Doe
* 1956

0

John Smith
% 1980

Jane Doe
%* 1982

Uncle Harry
* 1987

800C *
INYIIY
0T0C *

©YIOg

10T *
so[rey))

The following three options are tcolorbox options which are declared by the genealogytree

package. They can be redefined for customization.

/tcb/male
A tcolorbox option defined as

\tcbset{male/.style={colframe=blue}}

/tcb/female
A tcolorbox option defined as

\tcbset{female/.style={colframe=red}}

/tcb/neuter
A tcolorbox option defined as

\tcbset{neuter/.style={}}

(style, no value)

(style, no value)

(style, no value)

The following three options are genealogytree options which are shortcuts for setting the three

options above inside a /gtr/box "1

/gtr/male

This is an abbreviation for placing /tcb/male inside /gtr/box

/gtr/female

This is an abbreviation for placing /tcb/female inside /gtr/box

/gtr/neuter

This is an abbreviation for placing /tcb/neuter inside /gtr/box

Also see /gtr/database/sex 169,

101

(style, no

—P.98

(style, no
»P.98

value, initially unset)

value, initially unset)

(style, no value, initially unset)
»P. 98

\begin{tikzpicture}
\genealogytree[template=formal graph,
{
child{
glmale]{A}
plfemale] {B}
c[female]{C} c[malel{D} clneuter]{E}
}
}
\end{tikzpicture}

\tcbsetq{
male/.style={sharp corners,colframe=blue,colback=blue!10,
watermark text=\gtrSymbolsSetDraw{blue!30}\gtrsymMale},
female/.style={arc=4pt,colframe=red,colback=red!10,
watermark text=\gtrSymbolsSetDraw{red!30}\gtrsymFemale},
neuter/.style={arc=2pt,colframe=black!80!white,colback=black!5,
watermark text=\gtrSymbolsSetDraw{black!20}\gtrsymNeuter},
¥
\begin{tikzpicture}
\genealogytree[template=formal graph,
17
child{
glmale] {A}
plfemale]{B}
c[female]{C} c[malel{D} c[neuter]{E}
}
}
\end{tikzpicture}

102

N 2016-07-29 /gtr/tikz=(options) (style, initially empty)
Applys extra TikZ (options) for drawing a node. These (options) are not used for the node
box content, even if /gtr/processing 3% is set to tikznode. They are used in the
drawing process to reserve a node space for the later placement of the box content.

The most interesting usage is to move the node from its computed position. Note that the

auto-layout algorithm is not aware of such movements, but edge drawing will follow the
new positioning.

\begin{tikzpicture}
\genealogytree[template=formal graph,
1{7
child{
g{A} p{B}
c[tikz={xshift=-20mm,yshift=-5mm}]{C}
c{D} c{E}
}
}
\end{tikzpicture}

\begin{tikzpicture}
\genealogytree[template=formal graph,
147
child{
g{A}
pltikz={xshift=10mm,yshift=5mm,draw=green!75,line width=2mm}]{B}
cl[tikz={
pin={[fill=red!30,inner sep=2pt]left:Description}
}14{c}
c{D} c{E}
}
}
\end{tikzpicture}

Description | C

For node movements which influence the auto-layout algorithm, see /gtr/distance "%
/gtr/pivot P97 and /gtr/pivot shift !5 For node content option settings like
coloring, see /gtr/box "%,

103

5.6 Family Options
/gtr/options for family={(id list)}{(options)} (style, no default) U 2020-07-27

The given (options) are set for all families with /gtr/id 92 values from the given (id list).

If an /gtr/id "7 92 value is not existing, the setting is silently ignored. The intended spot
for using /gtr/options for family is before \genealogytree ' %°
list. Also see Section 5.1.1 on page 78 and Section 5.1.2 on page 79.

or inside its option

(A
\begin{tikzpicture}
\genealogytree[template=signpost,
options for family={Doe}{box={
coltext=green!25!black,fontupper=\bfseries,width=3cm,
interior style={top color=green!50!white,bottom color=green!75!black}
3]
{input{example.option.graph}}
\end{tikzpicture}

Grandpa
Smith
* 1949

Grandma
Smith
%* 1952

o

John Smith
* 1980

Arthur Berta Charles
* 2008 % 2010 * 2014

. 7

\gtrsetoptionsforfamily{(id list)}{(options)} U 2020-07-27
\getree_set_options_for_family:nn{(id list)}{{options)} N 2020-07-27
Identical to using /gtr/options for family.

104

/gtr/family={(options)} (style, no default)
The given (options) are set for all nodes and edges within the current scope. This scope
is intended to be a /gtr/level " 109 or /gtr/level n 710 definition or an option of a

family identifier like parent or child. Also see Section 5.1.1 on page 78 and Section 5.1.2
on page 79.

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={
family={
edges={swing,foreground=red,background=red!20},
box={interior style={top color=red!30,bottom color=red}}}
}
{input{example.option.graph}}
\end{tikzpicture}

Arthur Berta Charles
* 2008 * 2010 * 2014

105

/gtr/pivot shift=(length) (no default, initially Opt)
For a family, there is a parent pivot point (typically centered between the parents) and
a child pivot point (typically centered between the children). Normally, the auto-layout
algorithms brings both points in congruence. Using a /gtr/pivot shift, there is a shift
of the given (length) between these two points. Note that this works for child, parent,
and sandclock, but not for union.

\begin{tikzpicture}
\genealogytree [template=signpost]
{
parent [pivot shift=-1.5cm]{
g{Child}
plmale]l {Father}
plfemale] {Mother}
}
}
\genealogytree[tree offset=4.5cm]{
parent{
g{Child}
plmale]{Father}
plfemale] {Mother}
}
}
\genealogytree[tree offset=9cm]{
parent [pivot shift=1.5cm]{
g{Child}
plmale]{Father}
plfemale]{Mother}
}
}
\end{tikzpicture}

Father Mother Father Mother Father Mother

Child Child Child

106

5.7 Subtree Options

U 2020-07-27 /gtr/options for subtree={(id list)}{({options)} (style, no default)

The given (options) are set for all subtrees with /gtr/id "% values from the given (id
list). Subtrees are identified by the /gtr/id "2 of the root family of the subtree. If an
/gtr/id " 92 value is not existing, the setting is silently ignored. The intended spot for
using /gtr/options for subtree is before \genealogytree % or inside its option list.
Also see Section 5.1.1 on page 78 and Section 5.1.2 on page 79.

\begin{tikzpicture}
\genealogytree[template=signpost,
options for subtree={SmithDoe}{/
box={interior style={top color=red!30,bottom color=red}}}
]
{
parent{
g{Puppy}
input{example.option.graph}
parent
{
glfemale] {Nanny}
plmale]{Pa}
plfemale]{Ma}
}
}
}
\end{tikzpicture}

Pa Ma

Nanny

Puppy

U 2020-07-27 \gtrsetoptionsforsubtree{(id list)}{({options)}
N 2020-07-27 \getree_set_options_for_subtree:nn{(id list)}{(options)}
Identical to using /gtr/options for subtree.

107

/gtr/subtree={(options)}

and Section 5.1.2 on page 79.

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={/

subtree={edges={swing,foreground=red,background=red!20}}}

]
{
parent{
g{Puppy}
input{example.option.graph}
parent
glfemale] {Nanny}
plmale]{Pa}
plfemale]{Ma}
}
}
\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

i

John Smith
% 1980

—=

(style, no default)
The given (options) are set for all families and their nodes and edges within the current
scope. This scope is intended to be a /gtr/level 719 or /gtr/level n 7110 definition
or an option of a family identifier like parent or child. Also see Section 5.1.1 on page 78

Jane Doe
% 1982

Uncle Harry
* 1987

Pa

Ma

i

Nanny

Arthur Berta Charles
* 2008 * 2010 * 2014
Puppy

108

5.8 Level Options
With /gtr/level and /gtr/level n ' 110 options can be set for individual levels of the graph.
Inside the key list of these styles, the following options can be used:

e All geometry options, see Section 5.3 on page 83.

/gtr/node "% to set options for nodes.

/gtr/family " 105 to set options for families.

/gtr/subtree 1% to set options for subtrees.

- P. 117

—-P. 119

Also see /gtr/ignore and /gtr/ignore level

Also see Section 5.1.1 on page 78 and Section 5.1.2 on page 79.
/gtr/level=(number) (style, initially empty)

An initially empty style which is applied at each level with the level (number) as parameter.
This style can be redefined.

\begin{tikzpicture}
\genealogytree[template=signpost,
level/.style={node={show=level #13}}]
{input{example.option.graph}}
\end{tikzpicture}

S | . LI AP |

level 2 level 2 level 2 level 2

* 1Y4Y J l * 1YoZ * 1Yo00 l * 1Yo0 J
I | I
level 1 level 1 level 1

| J L L
I
I I I
[[
level 0 level O level 0O

\

109

/gtr/level n

At each level with the level number n this style is applied after /gtr/level

style can be (re-)defined.

\begin{tikzpicture}
\genealogytree[template=signpost,
level 2/.style={node box={colback=black!30}},
level 1/.style={node box={colback=red!30}},
level 0/.style={node box={colback=yellow!30}},
]
{input{example.option.graph}}
\end{tikzpicture}

(style, initially unset)

Grandpa Grandma Grandpa
Smith Smith Doe
%* 1949 * 1952 * 1955

Grandma
Doe
* 1956

0

—

Uncle Harry
* 1987

John Smith Jane Doe
%* 1980 %* 1982
Arthur Berta Charles
* 2008 * 2010 *2014

110

- P.109

This

5.9 Tree Positioning Options

/gtr/proband level=(number) (no default, initially 0)

Sets the level number of the proband to (number). All level numbers inside the given tree
will be adapted accordingly. This is useful in connection with /gtr/level "I '% dependent
settings, especially when two trees are connected.

/gtr/tree offset=(length)

Sets the offset value of the root family to (length). Depending on the given
/gtr/timeflow 80 this means a shift in horizontal or vertical direction in reference
of the tikzpicture coordinate system.

(no default, initially Opt)

/gtr/after parser=(code) (no default, initially empty)

Adds (code) to a list of code which is executed after the tree content is parsed and before

the parsed data is drawn. This is used internally by other options and may not be needed
by a normal user.

The following options allow to shift the whole tree such that a specific node is placed at a specific
position.
e /gtr/set position: place a node centered at a position.

e /gtr/adjust position T2 place a node relative to a position (respecting the node
dimensions).

e /gtr/adjust node "F!'!3: place a node relative to another node (respecting both node
dimensions).

/gtr/set position=(node) at (position) (style, no default)

Adjusts the current graph such that a (node) of the graph is placed at the given (position).

If the (position) is given by coordinates, one has to use curly brackets to enclose (position),
e.g. {2,3}. The (node) is identified by a /gtr/id "2,

\begin{tikzpicture}
\node [draw,fill=red!30,minimum size=3cm] (X) at (0,0) {};
\draw[white] (X.south west)--(X.north east) (X.north west)--(X.south east);

\genealogytree[template=signpost,
set position=Harr1987 at X,
options for node={Harr1987}{box={colback=yellow!50}}]
{input{example.option.graph}}

\draw[red!70] (Harr1987) circle (1.5cm);

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

o

John Smith Jane Do Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles

* 2008 * 2010 *2014

111

/gtr/adjust position=(node) (direction) of (position)
distance (distance) shift (shift)

Adjusts the current graph such that a (node) of the graph is placed in the given (direction)
relative to the given (position) with a given (distance) in this direction and an optional
(shift) orthogonal to the direction. The (node) is identified by a /gtr/id "2,

Feasible values for the (direction) are

right
left

above
below

\begin{tikzpicture}
\draw([red] (-0.3,-0.3)--++(0.6,0.6) (-0.3,0.3)--++(0.6,-0.6);
\node [right=3mm] at (0,0) {Reference Position};

\genealogytree [template=signpost,

adjust position=Harr1987 left of {0,0} distance lcm,
options for node={Harr1987}{box={colback=yellow!50}}]
{input{example.option.graphl}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 %* 1952 * 1955 * 1956

—

John Smith Jane Doe Uncle Harry
* 1982 * 1987

Arthur Berta Charles

* 2008 * 2010 * 2014

112

(style, no default)

>< Reference Position

/gtr/adjust node=(node) (direction) of (reference node)

distance (distance) shift (shift)

(style, no default)

Adjusts the current graph such that a (node) of the graph is placed in the given (direction)
relative to the given (reference node) (a TikZ node) with a given (distance) in this di-
rection and an optional (shift) orthogonal to the direction. The (node) is identified by a
/gtr/id P92,
Feasible values for the (direction) are

\begin{tikzpicture}

right (right of (reference node).east)
left (left of (reference node).west)
above (above of (reference node).north)
below (below of (reference node).south)

\node [fill=yellow!50,draw=red] (R) {Reference Node};

\genealogytree[template=signpost,
adjust node=Harr1987 left of R distance 1cm,
options for node={Harr1987}{box={colback=yellow!50}}]
{input{example.option.graphl}}

\end{tikzpicture}
Grandpa Grandma Grandpa Grandma
Smith Smith Doe Doe
* 1949 * 1952 * 1955 * 1956

o

——

Reference Node

John Smith Jane Doe Uncle Harry
* 1980 * 1982 * 1987

Arthur Berta Charles

% 2008 %2010 %2014

113

5.10 TikZ and Tcolorbox Options

Also see /gtr/tikz "1 103,

/gtr/tikzpicture={(tikz options)} (no default, initially empty)

Used to insert (tikz options) to the tikzpicture environment inside genealogypicture 97,
This option is ignored by \genealogytree 55!

\begin{genealogypicture} [template=formal graph,
tikzpicture={execute at end picture={
\path[draw=red,double,double distance=1pt,very thick,rounded corners]
([xshift=-5mm,yshift=-5mm] current bounding box.south west) rectangle
([xshift=5mm,yshift=5mm] current bounding box.north east);}} 1]

child{
g[box={colback=red!50}]1{A}
p{B}
c{C} c{D} c{E}

}

\end{genealogypicture}

/gtr/tikzset={(tikz options)} (no default, initially empty)

Used to insert (tikz options) before the tree is drawn by \genealogytree ™ or
genealogypicture " 1"°7. In contrast to /gtr/tikzpicture, one can use /gtr/tikzset
also for \genealogytree "I °° but some some settings may need to be given in the argu-
ment of tikzpicture (see The TikZ and PGF Packages [5]).

Note that \genealogytree " ? does not limit the scope of these settings.

\begin{genealogypicture} [template=formal graph,
tikzset={myfill/.style={top color=yellow,bottom color=red}}]

child{
glbox={interior style=myfill}]{A}
p{B}
c{Cr c{D} c{E}

}

\end{genealogypicture}

114

/gtr/after tree={(tikz code)} (no default, initially empty)
~>P.55

Used to insert (tikz code) after the tree is drawn by \genealogytree or
genealogypicture " °7. This is also used internally by other options.
\begin{genealogypicture}[template=formal graph,
after tree={ \draw[very thick,blue,-Latex] (node_A) to[out=180,in=120] (node_C);
3
child{
g[box={colback=red!50},id=node_A]{A}
p{B}
c[id=node_Cl{C} <c{D} c{E}
}
\end{genealogypicture}
C
/gtr/tcbset={(tcolorbozr options)} (no default, initially empty)
Used to insert (tcolorbox options) before the tree is drawn by \genealogytree '™ or

genealogypicture ~F 57,

Note that \genealogytree P.55

does not limit the scope of these settings.

\begin{genealogypicture} [template=formal graph,
tcbset={
male/.style={colframe=blue,colback=blue!5},
female/.style={colframe=red, colback=red!5}
}
]
child{
glmale]{A}
plfemale] {B}
c[male]{C} cl[female]l{D} c[male]l{E}
}
\end{genealogypicture}

115

/tikz/fit to fami