GNAT User’s Guide

GNAT, The GNU Ada Compiler
For ccce version 4.6.3

(GCC)

AdaCore

Copyright (© 1995-2009 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free

Documentation License”.

About This Guide 1

About This Guide

This guide describes the use of GNAT, a compiler and software development toolset for the
full Ada programming language. It documents the features of the compiler and tools, and
explains how to use them to build Ada applications.

GNAT implements Ada 95 and Ada 2005, and it may also be invoked in Ada 83 compat-

ibility mode. By default, GNAT assumes Ada 2005, but you can override with a compiler
switch (see Section 3.2.9 [Compiling Different Versions of Ada], page 76) to explicitly specify
the language version. Throughout this manual, references to “Ada” without a year suffix
apply to both the Ada 95 and Ada 2005 versions of the language.

What This Guide Contains

This guide contains the following chapters:

Chapter 1 [Getting Started with GNAT], page 5, describes how to get started compiling
and running Ada programs with the GNAT Ada programming environment.

Chapter 2 [The GNAT Compilation Model], page 13, describes the compilation model
used by GNAT.

Chapter 3 [Compiling Using gccl, page 41, describes how to compile Ada programs
with gcc, the Ada compiler.

Chapter 4 [Binding Using gnatbind], page 89, describes how to perform binding of Ada
programs with gnatbind, the GNAT binding utility.

Chapter 5 [Linking Using gnatlink], page 99, describes gnatlink, a program that pro-
vides for linking using the GNAT run-time library to construct a program. gnatlink
can also incorporate foreign language object units into the executable.

Chapter 6 [The GNAT Make Program gnatmake|, page 103, describes gnatmake, a
utility that automatically determines the set of sources needed by an Ada compilation
unit, and executes the necessary compilations binding and link.

Chapter 7 [Improving Performance|, page 113, shows various techniques for making
your Ada program run faster or take less space. It discusses the effect of the compiler’s
optimization switch and also describes the gnatelim tool and unused subprogram/data
elimination.

Chapter 8 [Renaming Files Using gnatchop]|, page 127, describes gnatchop, a utility
that allows you to preprocess a file that contains Ada source code, and split it into one
or more new files, one for each compilation unit.

Chapter 9 [Configuration Pragmas|, page 131, describes the configuration pragmas
handled by GNAT.

Chapter 10 [Handling Arbitrary File Naming Conventions Using gnatname|, page 133,
shows how to override the default GNAT file naming conventions, either for an indi-
vidual unit or globally.

Chapter 11 [GNAT Project Manager|, page 137, describes how to use project files to
organize large projects.

Chapter 13 [The Cross-Referencing Tools gnatxref and gnatfind], page 191, discusses
gnatxref and gnatfind, two tools that provide an easy way to navigate through
sources.

GNAT User’s Guide

Chapter 14 [The GNAT Pretty-Printer gnatpp], page 201, shows how to produce a
reformatted version of an Ada source file with control over casing, indentation, comment
placement, and other elements of program presentation style.

Chapter 15 [The GNAT Metric Tool gnatmetric], page 213, shows how to compute
various metrics for an Ada source file, such as the number of types and subprograms,
and assorted complexity measures.

Chapter 16 [File Name Krunching Using gnatkr|, page 223, describes the gnatkr file
name krunching utility, used to handle shortened file names on operating systems with
a limit on the length of names.

Chapter 17 [Preprocessing Using gnatprep|, page 227, describes gnatprep, a prepro-
cessor utility that allows a single source file to be used to generate multiple or param-
eterized source files by means of macro substitution.

Chapter 18 [The GNAT Library Browser gnatls|, page 231, describes gnatls, a utility
that displays information about compiled units, including dependences on the corre-
sponding sources files, and consistency of compilations.

Chapter 19 [Cleaning Up Using gnatclean|, page 235, describes gnatclean, a utility to
delete files that are produced by the compiler, binder and linker.

Chapter 20 [GNAT and Libraries|, page 237, describes the process of creating and using
Libraries with GNAT. It also describes how to recompile the GNAT run-time library.
Chapter 21 [Using the GNU make Utility|, page 245, describes some techniques for
using the GNAT toolset in Makefiles.

Chapter 22 [Memory Management Issues|, page 251, describes some useful predefined
storage pools and in particular the GNAT Debug Pool facility, which helps detect
incorrect memory references. It also describes gnatmem, a utility that monitors dynamic
allocation and deallocation and helps detect “memory leaks”.

Chapter 23 [Stack Related Facilities], page 259, describes some useful tools associated
with stack checking and analysis.

Chapter 24 [Verifying Properties Using gnatcheck], page 261, discusses gnatcheck, a
utility that checks Ada code against a set of rules.

Chapter 25 [Creating Sample Bodies Using gnatstub|, page 263, discusses gnatstub, a
utility that generates empty but compilable bodies for library units.

Chapter 26 [Generating Ada Bindings for C and C++ headers], page 267, describes how
to generate automatically Ada bindings from C and C++ headers.

Chapter 27 [Other Utility Programs|, page 273, discusses several other GNAT utilities,
including gnathtml.

Chapter 28 [Code Coverage and Profiling], page 277, describes how to perform a struc-
tural coverage and profile the execution of Ada programs.

Chapter 29 [Running and Debugging Ada Programs|, page 281, describes how to run
and debug Ada programs.

Appendix A [Platform-Specific Information for the Run-Time Libraries|, page 297,
describes the various run-time libraries supported by GNAT on various platforms and
explains how to choose a particular library.

Appendix B [Example of Binder Output File], page 303, shows the source code for the
binder output file for a sample program.

About This Guide 3

Appendix C [Elaboration Order Handling in GNAT], page 317, describes how GNAT
helps you deal with elaboration order issues.

Appendix D [Conditional Compilation], page 343, describes how to model conditional
compilation, both with Ada in general and with GNAT facilities in particular.

Appendix E [Inline Assembler|, page 349, shows how to use the inline assembly facility
in an Ada program.

Appendix F [Compatibility and Porting Guide], page 359, contains sections on compat-
ibility of GNAT with other Ada development environments (including Ada 83 systems),
to assist in porting code from those environments.

Appendix G [Microsoft Windows Topics|, page 369, presents information relevant to
the Microsoft Windows platform.

What You Should Know before Reading This Guide

This guide assumes a basic familiarity with the Ada 95 language, as described in the Inter-
national Standard ANSI/ISO/IEC-8652:1995, January 1995. It does not require knowledge
of the new features introduced by Ada 2005, (officially known as ISO/IEC 8652:1995 with
Technical Corrigendum 1 and Amendment 1). Both reference manuals are included in the
GNAT documentation package.

Related Information

For further information about related tools, refer to the following documents:

See Section “About This Guide” in GNAT Reference Manual, which contains all ref-
erence material for the GNAT implementation of Ada.

Using the GNAT Programming Studio, which describes the GPS Integrated Develop-
ment Environment.

GNAT Programming Studio Tutorial, which introduces the main GPS features through
examples.

Ada 95 Reference Manual, which contains reference material for the Ada 95 program-
ming language.

Ada 2005 Reference Manual, which contains reference material for the Ada 2005 pro-
gramming language.

See Section “Debugging with GDB” in Debugging with GDB, for all details on the use
of the GNU source-level debugger.

See Section “The extensible self-documenting text editor” in GNU Emacs Manual, for
full information on the extensible editor and programming environment Emacs.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:

Functions, utility program names, standard names, and classes.
‘Option flags’
‘File names’, ‘button names’, and ‘field names’.

Variables, environment variables, and metasyntactic variables.

4 GNAT User’s Guide

e Emphasis.
e [optional information or parameters]

e Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters “$ ”
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some

other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

Full file names are shown with the “/” character as the directory separator; e.g.,
‘parent-dir/subdir/myfile.adb’. If you are using GNAT on a Windows platform, please
note that the “\” character should be used instead.

Chapter 1: Getting Started with GNAT 5)

1 Getting Started with GNAT

This chapter describes some simple ways of using GNAT to build executable Ada programs.
Section 1.1 [Running GNAT], page 5, through Section 1.4 [Using the gnatmake Utility],
page 8, show how to use the command line environment. Section 1.5 [Introduction to
GPS], page 8, provides a brief introduction to the GNAT Programming Studio, a visually-
oriented Integrated Development Environment for GNAT. GPS offers a graphical “look and
feel”, support for development in other programming languages, comprehensive browsing
features, and many other capabilities. For information on GPS please refer to Using the
GNAT Programming Studio.

1.1 Running GNAT

Three steps are needed to create an executable file from an Ada source file:
1. The source file(s) must be compiled.
2. The file(s) must be bound using the GNAT binder.
3. All appropriate object files must be linked to produce an executable.
All three steps are most commonly handled by using the gnatmake utility program that,

given the name of the main program, automatically performs the necessary compilation,
binding and linking steps.

1.2 Running a Simple Ada Program

Any text editor may be used to prepare an Ada program. (If Emacs is used, the optional
Ada mode may be helpful in laying out the program.) The program text is a normal text
file. We will assume in our initial example that you have used your editor to prepare the
following standard format text file:

with Ada.Text_IO; use Ada.Text_IO;
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

This file should be named ‘hello.adb’. With the normal default file naming conventions,
GNAT requires that each file contain a single compilation unit whose file name is the unit
name, with periods replaced by hyphens; the extension is ‘ads’ for a spec and ‘adb’ for a
body. You can override this default file naming convention by use of the special pragma
Source_File_Name (see Section 2.4 [Using Other File Names], page 17). Alternatively, if
you want to rename your files according to this default convention, which is probably more
convenient if you will be using GNAT for all your compilations, then the gnatchop utility
can be used to generate correctly-named source files (see Chapter 8 [Renaming Files Using
gnatchop]|, page 127).

You can compile the program using the following command ($ is used as the command
prompt in the examples in this document):
$ gcc -c hello.adb

6 GNAT User’s Guide

gecc is the command used to run the compiler. This compiler is capable of compiling
programs in several languages, including Ada and C. It assumes that you have given it an
Ada program if the file extension is either ‘.ads’ or ‘.adb’, and it will then call the GNAT
compiler to compile the specified file.

The ‘-¢’ switch is required. It tells gcc to only do a compilation. (For C programs, gcc
can also do linking, but this capability is not used directly for Ada programs, so the ‘-c’
switch must always be present.)

This compile command generates a file ‘hello.o’, which is the object file corresponding
to your Ada program. It also generates an “Ada Library Information” file ‘hello.ali’,
which contains additional information used to check that an Ada program is consistent.
To build an executable file, use gnatbind to bind the program and gnatlink to link it.
The argument to both gnatbind and gnatlink is the name of the ‘ALI’ file, but the default
extension of *.ali’ can be omitted. This means that in the most common case, the argument
is simply the name of the main program:

$ gnatbind hello
$ gnatlink hello

A simpler method of carrying out these steps is to use gnatmake, a master program that
invokes all the required compilation, binding and linking tools in the correct order. In
particular, gnatmake automatically recompiles any sources that have been modified since
they were last compiled, or sources that depend on such modified sources, so that “version
skew” is avoided.

$ gnatmake hello.adb

The result is an executable program called ‘hello’, which can be run by entering:

$ hello
assuming that the current directory is on the search path for executable programs.

and, if all has gone well, you will see

Hello WORLD!

appear in response to this command.

1.3 Running a Program with Multiple Units

Consider a slightly more complicated example that has three files: a main program, and
the spec and body of a package:

Chapter 1: Getting Started with GNAT 7

-

package Greetings is
procedure Hello;
procedure Goodbye;
end Greetings;

with Ada.Text_I0; use Ada.Text_IO;
package body Greetings is
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

procedure Goodbye is
begin
Put_Line ("Goodbye WORLD!");
end Goodbye;
end Greetings;

with Greetings;

procedure Gmain is

begin
Greetings.Hello;
Greetings.Goodbye;

end Gmain;

-

/

Following the one-unit-per-file rule, place this program in the following three separate files:

‘greetings.ads’
spec of package Greetings

‘greetings.adb’
body of package Greetings

‘gmain.adb’
body of main program

To build an executable version of this program, we could use four separate steps to compile,
bind, and link the program, as follows:

$ gcc -c gmain.adb

$ gcc -c greetings.adb

$ gnatbind gmain

$ gnatlink gmain
Note that there is no required order of compilation when using GNAT. In particular it
is perfectly fine to compile the main program first. Also, it is not necessary to compile
package specs in the case where there is an accompanying body; you only need to compile
the body. If you want to submit these files to the compiler for semantic checking and not
code generation, then use the ‘-gnatc’ switch:

$ gcc -c greetings.ads -gnatc
Although the compilation can be done in separate steps as in the above example, in practice
it is almost always more convenient to use the gnatmake tool. All you need to know in this

case is the name of the main program’s source file. The effect of the above four commands
can be achieved with a single one:

$ gnatmake gmain.adb

In the next section we discuss the advantages of using gnatmake in more detail.

8 GNAT User’s Guide

1.4 Using the gnatmake Utility

If you work on a program by compiling single components at a time using gcc, you typically
keep track of the units you modify. In order to build a consistent system, you compile not
only these units, but also any units that depend on the units you have modified. For exam-
ple, in the preceding case, if you edit ‘gmain.adb’, you only need to recompile that file. But
if you edit ‘greetings.ads’, you must recompile both ‘greetings.adb’ and ‘gmain.adb’,
because both files contain units that depend on ‘greetings.ads’.

gnatbind will warn you if you forget one of these compilation steps, so that it is im-
possible to generate an inconsistent program as a result of forgetting to do a compilation.
Nevertheless it is tedious and error-prone to keep track of dependencies among units. One
approach to handle the dependency-bookkeeping is to use a makefile. However, makefiles
present maintenance problems of their own: if the dependencies change as you change the
program, you must make sure that the makefile is kept up-to-date manually, which is also
an error-prone process.

The gnatmake utility takes care of these details automatically. Invoke it using either one
of the following forms:

$ gnatmake gmain.adb
$ gnatmake gmain

The argument is the name of the file containing the main program; you may omit the ex-
tension. gnatmake examines the environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files, generating the executable
file, ‘gmain’. In a large program, it can be extremely helpful to use gnatmake, because
working out by hand what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the Ada rules that establish dependencies
among units. These include dependencies that result from inlining subprogram bodies, and
from generic instantiation. Unlike some other Ada make tools, gnatmake does not rely on
the dependencies that were found by the compiler on a previous compilation, which may
possibly be wrong when sources change. gnatmake determines the exact set of dependencies
from scratch each time it is run.

1.5 Introduction to GPS

Although the command line interface (gnatmake, etc.) alone is sufficient, a graphical In-
teractive Development Environment can make it easier for you to compose, navigate, and
debug programs. This section describes the main features of GPS (“GNAT Programming
Studio”), the GNAT graphical IDE. You will see how to use GPS to build and debug an
executable, and you will also learn some of the basics of the GNAT “project” facility.

GPS enables you to do much more than is presented here; e.g., you can produce a
call graph, interface to a third-party Version Control System, and inspect the generated
assembly language for a program. Indeed, GPS also supports languages other than Ada.
Such additional information, and an explanation of all of the GPS menu items. may be found
in the on-line help, which includes a user’s guide and a tutorial (these are also accessible
from the GNAT startup menu).

Chapter 1: Getting Started with GNAT 9

1.5.1 Building a New Program with GPS

GPS invokes the GNAT compilation tools using information contained in a project (also
known as a project file): a collection of properties such as source directories, identities of
main subprograms, tool switches, etc., and their associated values. See Chapter 11 [GNAT
Project Manager], page 137 for details. In order to run GPS, you will need to either create
a new project or else open an existing one.

This section will explain how you can use GPS to create a project, to associate Ada
source files with a project, and to build and run programs.

1. Creating a project

Invoke GPS, either from the command line or the platform’s IDE. After it starts, GPS
will display a “Welcome” screen with three radio buttons:

e Start with default project in directory
e Create new project with wizard
e (Open existing project

Select Create new project with wizard and press OK. A new window will appear. In
the text box labeled with Enter the name of the project to create, type ‘sample’
as the project name. In the next box, browse to choose the directory in which you
would like to create the project file. After selecting an appropriate directory, press
Forward.

A window will appear with the title Version Control System Configuration. Simply
press Forward.

A window will appear with the title Please select the source directories for
this project. The directory that you specified for the project file will be selected by
default as the one to use for sources; simply press Forward.

A window will appear with the title Please select the build directory for this
project. The directory that you specified for the project file will be selected by default
for object files and executables; simply press Forward.

A window will appear with the title Please select the main units for this
project. You will supply this information later, after creating the source file. Simply
press Forward for now.
A window will appear with the title Please select the switches to build the
project. Press Apply. This will create a project file named ‘sample.prj’ in the
directory that you had specified.
2. Creating and saving the source file

After you create the new project, a GPS window will appear, which is partitioned into
two main sections:

e A Workspace area, initially greyed out, which you will use for creating and editing

source files

e Directly below, a Messages area, which initially displays a “Welcome” message.
(If the Messages area is not visible, drag its border upward to expand it.)

Select File on the menu bar, and then the New command. The Workspace area will
become white, and you can now enter the source program explicitly. Type the following
text

10

GNAT User’s Guide

with Ada.Text_IO; use Ada.Text_IO;
procedure Hello is
begin
Put_Line("Hello from GPS!");
end Hello;
Select File, then Save As, and enter the source file name ‘hello.adb’. The file will be

saved in the same directory you specified as the location of the default project file.
Updating the project file

You need to add the new source file to the project. To do this, select the Project
menu and then Edit project properties. Click the Main files tab on the left, and
then the Add button. Choose ‘hello.adb’ from the list, and press Open. The project
settings window will reflect this action. Click OK.

Building and running the program

In the main GPS window, now choose the Build menu, then Make, and select
‘hello.adb’. The Messages window will display the resulting invocations of gcc,
gnatbind, and gnatlink (reflecting the default switch settings from the project file
that you created) and then a “successful compilation/build” message.

To run the program, choose the Build menu, then Run, and select hello. An Arguments
Selection window will appear. There are no command line arguments, so just click OK.

The Messages window will now display the program’s output (the string Hello from
GPS), and at the bottom of the GPS window a status update is displayed (Run: hello).
Close the GPS window (or select File, then Exit) to terminate this GPS session.

1.5.2 Simple Debugging with GPS

This section illustrates basic debugging techniques (setting breakpoints, examin-
ing/modifying variables, single stepping).

1.

Opening a project
Start GPS and select Open existing project; browse to specify the project file
‘sample.prj’ that you had created in the earlier example.

Creating a source file

Select File, then New, and type in the following program:

with Ada.Text_I0; use Ada.Text_IO0;
procedure Example is
Line : String (1..80);
N : Natural;
begin
Put_Line("Type a line of text at each prompt; an empty line to exit");
loop
Put(": n);
Get_Line (Line, N);
Put_Line (Line (1..N));
exit when N=0;
end loop;
end Example;

Select File, then Save as, and enter the file name ‘example.adb’.
Updating the project file

Add Example as a new main unit for the project:

Chapter 1: Getting Started with GNAT 11

Select Project, then Edit Project Properties.

b. Select the Main files tab, click Add, then select the file ‘example.adb’ from the

C.

list, and click Open. You will see the file name appear in the list of main units
Click 0K

4. Building/running the executable

To build the executable select Build, then Make, and then choose ‘example.adb’.

Run the program to see its effect (in the Messages area). Each line that you enter is
displayed; an empty line will cause the loop to exit and the program to terminate.

5. Debugging the program

Note that the ‘-g’ switches to gcc and gnatlink, which are required for debugging,
are on by default when you create a new project. Thus unless you intentionally remove
these settings, you will be able to debug any program that you develop using GPS.

a.

Initializing
Select Debug, then Initialize, then ‘example’
Setting a breakpoint

After performing the initialization step, you will observe a small icon to the right
of each line number. This serves as a toggle for breakpoints; clicking the icon will
set a breakpoint at the corresponding line (the icon will change to a red circle with

[

an “x”), and clicking it again will remove the breakpoint / reset the icon.

For purposes of this example, set a breakpoint at line 10 (the statement Put_Line
(Line (1..N));

Starting program execution

Select Debug, then Run. When the Program Arguments window appears, click
0K. A console window will appear; enter some line of text, e.g. abcde, at the
prompt. The program will pause execution when it gets to the breakpoint, and
the corresponding line is highlighted.

Ezamining a variable

Move the mouse over one of the occurrences of the variable N. You will see the
value (5) displayed, in “tool tip” fashion. Right click on N, select Debug, then
select Display N. You will see information about N appear in the Debugger Data
pane, showing the value as 5.

Assigning a new value to a variable

Right click on the N in the Debugger Data pane, and select Set value of N. When
the input window appears, enter the value 4 and click 0K. This value does not
automatically appear in the Debugger Data pane; to see it, right click again on
the N in the Debugger Data pane and select Update value. The new value, 4, will
appear in red.

Single stepping

Select Debug, then Next. This will cause the next statement to be executed, in
this case the call of Put_Line with the string slice. Notice in the console window
that the displayed string is simply abcd and not abcde which you had entered.
This is because the upper bound of the slice is now 4 rather than 5.

12

GNAT User’s Guide

g. Removing a breakpoint

Toggle the breakpoint icon at line 10.

h. Resuming execution from a breakpoint

Select Debug, then Continue. The program will reach the next iteration of the
loop, and wait for input after displaying the prompt. This time, just hit the Enter
key. The value of N will be 0, and the program will terminate. The console window
will disappear.

Chapter 2: The GNAT Compilation Model 13

2 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to that
used by other languages, such as C and C++, this model is substantially different from the
traditional Ada compilation models, which are based on a library. The model is initially
described without reference to the library-based model. If you have not previously used an
Ada compiler, you need only read the first part of this chapter. The last section describes
and discusses the differences between the GNAT model and the traditional Ada compiler
models. If you have used other Ada compilers, this section will help you to understand
those differences, and the advantages of the GNAT model.

2.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding. Latin-1 is
an 8-bit code that includes the familiar 7-bit ASCII set, plus additional characters used for
representing foreign languages (see Section 2.2 [Foreign Language Representation], page 13
for support of non-USA character sets). The format effector characters are represented
using their standard ASCII encodings, as follows:

VT Vertical tab, 16#0B#

HT Horizontal tab, 16#09#
CR Carriage return, 16#0D#
LF Line feed, 16#0A#

FF Form feed, 16#0C#

Source files are in standard text file format. In addition, GNAT will recognize a wide
variety of stream formats, in which the end of physical lines is marked by any of the
following sequences: LF, CR, CR-LF, or LF-CR. This is useful in accommodating files that
are imported from other operating systems.

The end of a source file is normally represented by the physical end of file. However, the
control character 16#1A# (SUB) is also recognized as signalling the end of the source file.
Again, this is provided for compatibility with other operating systems where this code is
used to represent the end of file.

Each file contains a single Ada compilation unit, including any pragmas associated with
the unit. For example, this means you must place a package declaration (a package spec)
and the corresponding body in separate files. An Ada compilation (which is a sequence of
compilation units) is represented using a sequence of files. Similarly, you will place each
subunit or child unit in a separate file.

2.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada as well as several other non-
standard character sets for use in localized versions of the compiler (see Section 3.2.10
[Character Set Control], page 77).

14 GNAT User’s Guide

2.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard 8859,
part 1. The lower half (character codes 16#00# ... 16#7F#) is identical to standard ASCII
coding, but the upper half is used to represent additional characters. These include extended
letters used by European languages, such as French accents, the vowels with umlauts used
in German, and the extra letter A-ring used in Swedish.

For a complete list of Latin-1 codes and their encodings, see the source file of library
unit Ada.Characters.Latin_1 in file ‘a-chlatl.ads’. You may use any of these extended
characters freely in character or string literals. In addition, the extended characters that
represent letters can be used in identifiers.

2.2.2 Other 8-Bit Codes
GNAT also supports several other 8-bit coding schemes:

ISO 8859-2 (Latin-2)
Latin-2 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-3 (Latin-3)
Latin-3 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-4 (Latin-4)
Latin-4 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-5 (Cyrillic)
ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and lowercase
equivalence.

ISO 8859-15 (Latin-9)
ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and lower-
case equivalence

IBM PC (code page 437)
This code page is the normal default for PCs in the U.S. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended
Latin-1 letters, but these letters do not have the same encoding as Latin-1. In
this mode, these letters are allowed in identifiers with uppercase and lowercase
equivalence.

IBM PC (code page 850)
This code page is a modification of 437 extended to include all the Latin-1
letters, but still not with the usual Latin-1 encoding. In this mode, all these
letters are allowed in identifiers with uppercase and lowercase equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and all are considered
distinct. In other words, there are no uppercase and lowercase equivalences in
this range. This is useful in conjunction with certain encoding schemes used for
some foreign character sets (e.g., the typical method of representing Chinese
characters on the PC).

Chapter 2: The GNAT Compilation Model 15

No Upper-Half
No upper-half characters in the range 80-FF are allowed in identifiers. This
gives Ada 83 compatibility for identifier names.

For precise data on the encodings permitted, and the uppercase and lowercase equivalences
that are recognized, see the file ‘csets.adb’ in the GNAT compiler sources. You will need
to obtain a full source release of GNAT to obtain this file.

2.2.3 Wide Character Encodings

GNAT allows wide character codes to appear in character and string literals, and also
optionally in identifiers, by means of the following possible encoding schemes:

Hex Coding
In this encoding, a wide character is represented by the following five character
sequence:
ESCabcd

Where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ESC A345 is used to represent the
wide character with code 16#A345#. This scheme is compatible with use of the
full Wide_Character set.

Upper-Half Coding
The wide character with encoding 16#abcd# where the upper bit is on (in other
words, “a” is in the range 8-F) is represented as two bytes, 16#ab# and 16#cd#.
The second byte cannot be a format control character, but is not required to
be in the upper half. This method can be also used for shift-JIS or EUC, where
the internal coding matches the external coding.

Shift JIS Coding
A wide character is represented by a two-character sequence, 16#ab# and
16#cd#, with the restrictions described for upper-half encoding as described
above. The internal character code is the corresponding JIS character
according to the standard algorithm for Shift-JIS conversion. Only characters
defined in the JIS code set table can be used with this encoding method.

EUC Coding
A wide character is represented by a two-character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal character
code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxxxxX#
16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#
16#0800#—-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxXXXX#

16 GNAT User’s Guide

where the xxx bits correspond to the left-padded bits of the 16-bit character
value. Note that all lower half ASCII characters are represented as ASCII
bytes and all upper half characters and other wide characters are represented
as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-bit
characters as 6-byte sequences, but in this implementation, all UTF-8 sequences
of four or more bytes length will be treated as illegal).

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:
["abca"]

Where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, [“A345”] is used to represent the wide
character with code 16#A345#. It is also possible (though not required) to use
the Brackets coding for upper half characters. For example, the code 16#A3#
can be represented as [€“A3’°].

This scheme is compatible with use of the full Wide_Character set, and is also
the method used for wide character encoding in the standard ACVC (Ada
Compiler Validation Capability) test suite distributions.

Note: Some of these coding schemes do not permit the full use of the Ada character set.
For example, neither Shift JIS, nor EUC allow the use of the upper half of the Latin-1 set.

2.3 File Naming Rules

The default file name is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lowercase for all letters.

An exception arises if the file name generated by the above rules starts with one of the
characters ‘a’, ‘g’, ‘1’, or ‘s’, and the second character is a minus. In this case, the character
tilde is used in place of the minus. The reason for this special rule is to avoid clashes with
the standard names for child units of the packages System, Ada, Interfaces, and GNAT,
which use the prefixes ‘s-’, ‘a-’, ‘i-’, and ‘g-’, respectively.

The file extension is ‘.ads’ for a spec and ‘.adb’ for a body. The following list shows

some examples of these rules.

‘main.ads’
Main (spec)
‘main.adb’

Main (body)

‘arith_functions.ads’
Arith_Functions (package spec)

‘arith_functions.adb’
Arith_Functions (package body)

‘func-spec.ads’
Func.Spec (child package spec)

Chapter 2: The GNAT Compilation Model 17

‘func-spec.adb’
Func.Spec (child package body)

‘main-sub.adb’

Sub (subunit of Main)

‘a"bad.adb’
A.Bad (child package body)

Following these rules can result in excessively long file names if corresponding unit names
are long (for example, if child units or subunits are heavily nested). An option is available
to shorten such long file names (called file name “krunching”). This may be particularly
useful when programs being developed with GNAT are to be used on operating systems
with limited file name lengths. See Section 16.2 [Using gnatkr|, page 223.

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit
names; if file name krunching is used, it is your responsibility to ensure no name clashes
occur. Alternatively you can specify the exact file names that you want used, as described
in the next section. Finally, if your Ada programs are migrating from a compiler with a
different naming convention, you can use the gnatchop utility to produce source files that
follow the GNAT naming conventions. (For details see Chapter 8 [Renaming Files Using
gnatchop]|, page 127.)

Note: in the case of Windows NT/XP or OpenVMS operating systems, case is not significant.
So for example on Windows XP if the canonical name is main-sub.adb, you can use the file
name Main-Sub.adb instead. However, case is significant for other operating systems, so
for example, if you want to use other than canonically cased file names on a Unix system,
you need to follow the procedures described in the next section.

2.4 Using Other File Names

In the previous section, we have described the default rules used by GNAT to determine the
file name in which a given unit resides. It is often convenient to follow these default rules,
and if you follow them, the compiler knows without being explicitly told where to find all
the files it needs.

However, in some cases, particularly when a program is imported from another Ada
compiler environment, it may be more convenient for the programmer to specify which file
names contain which units. GNAT allows arbitrary file names to be used by means of the
Source_File_Name pragma. The form of this pragma is as shown in the following examples:

pragma Source_File_Name (My_Utilities.Stacks,
Spec_File_Name => "myutilst_a.ada");

pragma Source_File_name (My_Utilities.Stacks,
Body_File_Name => "myutilst.ada");

As shown in this example, the first argument for the pragma is the unit name (in this
example a child unit). The second argument has the form of a named association. The
identifier indicates whether the file name is for a spec or a body; the file name itself is given
by a string literal.

18 GNAT User’s Guide

The source file name pragma is a configuration pragma, which means that normally it
will be placed in the ‘gnat.adc’ file used to hold configuration pragmas that apply to a
complete compilation environment. For more details on how the ‘gnat.adc’ file is created
and used see Section 9.1 [Handling of Configuration Pragmas]|, page 132.

GNAT allows completely arbitrary file names to be specified using the source file name
pragma. However, if the file name specified has an extension other than ‘.ads’ or ‘.adb’ it
is necessary to use a special syntax when compiling the file. The name in this case must
be preceded by the special sequence ‘-x’ followed by a space and the name of the language,
here ada, as in:

$ gcc —-c¢ -x ada peculiar_file_name.sim

gnatmake handles non-standard file names in the usual manner (the non-standard file name
for the main program is simply used as the argument to gnatmake). Note that if the
extension is also non-standard, then it must be included in the gnatmake command, it may
not be omitted.

2.5 Alternative File Naming Schemes

In the previous section, we described the use of the Source_File_Name pragma to allow
arbitrary names to be assigned to individual source files. However, this approach requires
one pragma for each file, and especially in large systems can result in very long ‘gnat.adc’
files, and also create a maintenance problem.

GNAT also provides a facility for specifying systematic file naming schemes other than
the standard default naming scheme previously described. An alternative scheme for naming
is specified by the use of Source_File_Name pragmas having the following format:

pragma Source_File_Name (
Spec_File_Name => FILE_NAME_PATTERN
[,Casing => CASING_SPEC
[,Dot_Replacement => STRING_LITERAL));

pragma Source_File_Name (
Body_File_Name => FILE_NAME_PATTERN
[,Casing => CASING_SPEC
[,Dot_Replacement => STRING_LITERAL));

pragma Source_File_Name (
Subunit_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERALD;
FILE_NAME_PATTERN ::= STRING_LITERAL
CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The FILE_NAME_PATTERN string shows how the file name is constructed. It contains a single
asterisk character, and the unit name is substituted systematically for this asterisk. The
optional parameter Casing indicates whether the unit name is to be all upper-case letters,
all lower-case letters, or mixed-case. If no Casing parameter is used, then the default is all
lower-case.

The optional Dot _Replacement string is used to replace any periods that occur in subunit
or child unit names. If no Dot_Replacement argument is used then separating dots appear
unchanged in the resulting file name. Although the above syntax indicates that the Casing

Chapter 2: The GNAT Compilation Model 19

argument must appear before the Dot _Replacement argument, but it is also permissible to
write these arguments in the opposite order.

As indicated, it is possible to specify different naming schemes for bodies, specs, and
subunits. Quite often the rule for subunits is the same as the rule for bodies, in which
case, there is no need to give a separate Subunit_File_Name rule, and in this case the
Body_File_name rule is used for subunits as well.

The separate rule for subunits can also be used to implement the rather unusual case
of a compilation environment (e.g. a single directory) which contains a subunit and a child
unit with the same unit name. Although both units cannot appear in the same partition,
the Ada Reference Manual allows (but does not require) the possibility of the two units
coexisting in the same environment.

The file name translation works in the following steps:

e If there is a specific Source_File_Name pragma for the given unit, then this is always
used, and any general pattern rules are ignored.

e If there is a pattern type Source_File_Name pragma that applies to the unit, then the
resulting file name will be used if the file exists. If more than one pattern matches, the
latest one will be tried first, and the first attempt resulting in a reference to a file that
exists will be used.

e If no pattern type Source_File_Name pragma that applies to the unit for which the
corresponding file exists, then the standard GNAT default naming rules are used.

As an example of the use of this mechanism, consider a commonly used scheme in which
file names are all lower case, with separating periods copied unchanged to the resulting file
name, and specs end with ‘.1.ada’, and bodies end with ‘.2.ada’. GNAT will follow this
scheme if the following two pragmas appear:

pragma Source_File_Name
(Spec_File_Name => "x.1.ada");

pragma Source_File_Name
(Body_File_Name => "*.2.ada");

The default GNAT scheme is actually implemented by providing the following default prag-
mas internally:

pragma Source_File_Name

(Spec_File_Name => "#.ads", Dot_Replacement => "-");
pragma Source_File_Name

(Body_File_Name => "*.adb", Dot_Replacement => "-");

Our final example implements a scheme typically used with one of the Ada 83 compilers,
where the separator character for subunits was “__” (two underscores), specs were identified
by adding ‘_.ADA’, bodies by adding ‘.ADA’, and subunits by adding ‘.SEP’. All file names
were upper case. Child units were not present of course since this was an Ada 83 compiler,
but it seems reasonable to extend this scheme to use the same double underscore separator
for child units.

pragma Source_File_Name
(Spec_File_Name => "x_.ADA",
Dot_Replacement => "__",
Casing = Uppercase);

pragma Source_File_Name
(Body_File_Name => "*.ADA",
Dot_Replacement => "__",

20 GNAT User’s Guide

Casing = Uppercase);

pragma Source_File_Name
(Subunit_File_Name => "* SEP",
Dot_Replacement => "__",

Casing = Uppercase);

2.6 Generating Object Files

An Ada program consists of a set of source files, and the first step in compiling the program
is to generate the corresponding object files. These are generated by compiling a subset of
these source files. The files you need to compile are the following;:

e If a package spec has no body, compile the package spec to produce the object file for
the package.

e If a package has both a spec and a body, compile the body to produce the object file
for the package. The source file for the package spec need not be compiled in this case
because there is only one object file, which contains the code for both the spec and
body of the package.

e For a subprogram, compile the subprogram body to produce the object file for the
subprogram. The spec, if one is present, is as usual in a separate file, and need not be
compiled.

e In the case of subunits, only compile the parent unit. A single object file is generated
for the entire subunit tree, which includes all the subunits.

e Compile child units independently of their parent units (though, of course, the spec of
all the ancestor unit must be present in order to compile a child unit).

e Compile generic units in the same manner as any other units. The object files in
this case are small dummy files that contain at most the flag used for elaboration
checking. This is because GNAT always handles generic instantiation by means of
macro expansion. However, it is still necessary to compile generic units, for dependency
checking and elaboration purposes.

The preceding rules describe the set of files that must be compiled to generate the object
files for a program. Each object file has the same name as the corresponding source file,
except that the extension is ‘.o’ as usual.

You may wish to compile other files for the purpose of checking their syntactic and
semantic correctness. For example, in the case where a package has a separate spec and
body, you would not normally compile the spec. However, it is convenient in practice to
compile the spec to make sure it is error-free before compiling clients of this spec, because
such compilations will fail if there is an error in the spec.

GNAT provides an option for compiling such files purely for the purposes of checking
correctness; such compilations are not required as part of the process of building a program.
To compile a file in this checking mode, use the ‘-gnatc’ switch.

2.7 Source Dependencies

A given object file clearly depends on the source file which is compiled to produce it. Here
we are using depends in the sense of a typical make utility; in other words, an object file
depends on a source file if changes to the source file require the object file to be recompiled.

Chapter 2: The GNAT Compilation Model 21

In addition to this basic dependency, a given object may depend on additional source files
as follows:

e If a file being compiled with’s a unit X, the object file depends on the file containing
the spec of unit X. This includes files that are with’ed implicitly either because they
are parents of with’ed child units or they are run-time units required by the language
constructs used in a particular unit.

e If a file being compiled instantiates a library level generic unit, the object file depends
on both the spec and body files for this generic unit.

e If a file being compiled instantiates a generic unit defined within a package, the object
file depends on the body file for the package as well as the spec file.

e If a file being compiled contains a call to a subprogram for which pragma Inline applies
and inlining is activated with the ‘~gnatn’ switch, the object file depends on the file
containing the body of this subprogram as well as on the file containing the spec. Note
that for inlining to actually occur as a result of the use of this switch, it is necessary
to compile in optimizing mode.

The use of ‘-gnatN’ activates inlining optimization that is performed by the front end
of the compiler. This inlining does not require that the code generation be optimized.
Like ‘~gnatn’, the use of this switch generates additional dependencies.

When using a gcee-based back end (in practice this means using any version of GNAT
other than the JGNAT, NET or GNAAMP versions), then the use of ‘-gnatN’ is
deprecated, and the use of ‘-gnatn’ is preferred. Historically front end inlining was
more extensive than the gce back end inlining, but that is no longer the case.

e If an object file ‘0’ depends on the proper body of a subunit through inlining or instan-
tiation, it depends on the parent unit of the subunit. This means that any modification
of the parent unit or one of its subunits affects the compilation of ‘0’.

e The object file for a parent unit depends on all its subunit body files.

e The previous two rules meant that for purposes of computing dependencies and recom-
pilation, a body and all its subunits are treated as an indivisible whole.

These rules are applied transitively: if unit A with’s unit B, whose elaboration calls an
inlined procedure in package C, the object file for unit A will depend on the body of C,
in file ‘c.adb’.

The set of dependent files described by these rules includes all the files on which the
unit is semantically dependent, as dictated by the Ada language standard. However,
it is a superset of what the standard describes, because it includes generic, inline, and
subunit dependencies.

An object file must be recreated by recompiling the corresponding source file if any
of the source files on which it depends are modified. For example, if the make utility
is used to control compilation, the rule for an Ada object file must mention all the
source files on which the object file depends, according to the above definition. The
determination of the necessary recompilations is done automatically when one uses
gnatmake.

22 GNAT User’s Guide

2.8 The Ada Library Information Files

Fach compilation actually generates two output files. The first of these is the normal
object file that has a ‘.o’ extension. The second is a text file containing full dependency
information. It has the same name as the source file, but an ‘.ali’ extension. This file is
known as the Ada Library Information (‘ALI’) file. The following information is contained
in the ‘ALI’ file.

e Version information (indicates which version of GNAT was used to compile the unit(s)
in question)

e Main program information (including priority and time slice settings, as well as the
wide character encoding used during compilation).

e List of arguments used in the gcc command for the compilation

e Attributes of the unit, including configuration pragmas used, an indication of whether
the compilation was successful, exception model used etc.

e A list of relevant restrictions applying to the unit (used for consistency) checking.

e Categorization information (e.g. use of pragma Pure).

e Information on all with’ed units, including presence of Elaborate or Elaborate_All
pragmas.

e Information from any Linker_Options pragmas used in the unit

e Information on the use of Body_Version or Version attributes in the unit.

e Dependency information. This is a list of files, together with time stamp and checksum

information. These are files on which the unit depends in the sense that recompilation
is required if any of these units are modified.

e Cross-reference data. Contains information on all entities referenced in the unit. Used
by tools like gnatxref and gnatfind to provide cross-reference information.

For a full detailed description of the format of the ‘ALI’ file, see the source of the body of
unit Lib.Writ, contained in file ‘1ib-writ.adb’ in the GNAT compiler sources.

2.9 Binding an Ada Program

When using languages such as C and C++, once the source files have been compiled the only
remaining step in building an executable program is linking the object modules together.
This means that it is possible to link an inconsistent version of a program, in which two
units have included different versions of the same header.

The rules of Ada do not permit such an inconsistent program to be built. For example,
if two clients have different versions of the same package, it is illegal to build a program
containing these two clients. These rules are enforced by the GNAT binder, which also
determines an elaboration order consistent with the Ada rules.

The GNAT binder is run after all the object files for a program have been created. It
is given the name of the main program unit, and from this it determines the set of units
required by the program, by reading the corresponding ALI files. It generates error messages
if the program is inconsistent or if no valid order of elaboration exists.

If no errors are detected, the binder produces a main program, in Ada by default, that
contains calls to the elaboration procedures of those compilation unit that require them,

Chapter 2: The GNAT Compilation Model 23

followed by a call to the main program. This Ada program is compiled to generate the object
file for the main program. The name of the Ada file is ‘b~ xxx.adb’ (with the corresponding
spec ‘b~ xxx.ads’) where xxx is the name of the main program unit.

Finally, the linker is used to build the resulting executable program, using the object
from the main program from the bind step as well as the object files for the Ada units of
the program.

2.10 Mixed Language Programming

This section describes how to develop a mixed-language program, specifically one that
comprises units in both Ada and C.

2.10.1 Interfacing to C

Interfacing Ada with a foreign language such as C involves using compiler directives to
import and/or export entity definitions in each language—using extern statements in C,
for instance, and the Import, Export, and Convention pragmas in Ada. A full treatment
of these topics is provided in Appendix B, section 1 of the Ada Reference Manual.

There are two ways to build a program using GNAT that contains some Ada sources
and some foreign language sources, depending on whether or not the main subprogram is
written in Ada. Here is a source example with the main subprogram in Ada:

/* filel.c */
#include <stdio.h>

void print_num (int num)

{
printf ("num is %d.\n", num);
return;

}
/* file2.c */

/* num_from_Ada is declared in my_main.adb */
extern int num_from_Ada;

int get_num (void)
{
return num_from_Ada;

}

-- my_main.adb
procedure My_Main is

-- Declare then export an Integer entity called num_from_Ada
My_Num : Integer := 10;
pragma Export (C, My_Num, "num_from_Ada");

-- Declare an Ada function spec for Get_Num, then use
-- C function get_num for the implementation.
function Get_Num return Integer;

pragma Import (C, Get_Num, "get_num");

-- Declare an Ada procedure spec for Print_Num, then use
-- C function print_num for the implementation.
procedure Print_Num (Num : Integer);

24 GNAT User’s Guide

pragma Import (C, Print_Num, "print_num");

begin
Print_Num (Get_Num);
end My_Main;
1. To build this example, first compile the foreign language files to generate object files:
gcec —c filel.c
gcec -c file2.c

2. Then, compile the Ada units to produce a set of object files and ALI files:

gnatmake -c my_main.adb

3. Run the Ada binder on the Ada main program:

gnatbind my_main.ali

4. Link the Ada main program, the Ada objects and the other language objects:

gnatlink my_main.ali filel.o file2.o

The last three steps can be grouped in a single command:
gnatmake my_main.adb -largs filel.o file2.o

If the main program is in a language other than Ada, then you may have more than one
entry point into the Ada subsystem. You must use a special binder option to generate
callable routines that initialize and finalize the Ada units (see Section 4.2.6 [Binding with
Non-Ada Main Programs], page 96). Calls to the initialization and finalization routines
must be inserted in the main program, or some other appropriate point in the code. The
call to initialize the Ada units must occur before the first Ada subprogram is called, and
the call to finalize the Ada units must occur after the last Ada subprogram returns. The
binder will place the initialization and finalization subprograms into the ‘b~xxx.adb’ file
where they can be accessed by your C sources. To illustrate, we have the following example:

/* main.c */

extern void adainit (void);

extern void adafinal (void);

extern int add (int, int);
extern int sub (int, int);

int main (int argc, char *argv[])
{
int a =21, b = 7;

adainit();

/* Should print "21 + 7 = 28" */
printf ("%d + %d = %d\n", a, b, add (a, b));
/* Should print "21 - 7 = 14" */
printf ("%d - %d = %d\n", a, b, sub (a, b));

adafinal();
}

-- unitl.ads

package Unitl is
function Add (A, B : Integer) return Integer;
pragma Export (C, Add, "add");

end Unitl;

-- unitl.adb

Chapter 2: The GNAT Compilation Model 25

package body Unitl is
function Add (A, B : Integer) return Integer is
begin
return A + B;
end Add;
end Unitl;

-- unit2.ads

package Unit2 is
function Sub (A, B : Integer) return Integer;
pragma Export (C, Sub, "sub");

end Unit2;

-- unit2.adb
package body Unit2 is
function Sub (A, B : Integer) return Integer is
begin
return A - B;
end Sub;
end Unit2;
The build procedure for this application is similar to the last example’s. First, compile
the foreign language files to generate object files:

gcc -c main.c

Next, compile the Ada units to produce a set of object files and ALI files:

gnatmake -c unitl.adb
gnatmake -c unit2.adb

Run the Ada binder on every generated ALI file. Make sure to use the ‘-n’ option to
specify a foreign main program:
gnatbind -n unitl.ali unit2.ali

Link the Ada main program, the Ada objects and the foreign language objects. You
need only list the last ALI file here:

gnatlink unit2.ali main.o -o exec_file

This procedure yields a binary executable called ‘exec_file’.

Depending on the circumstances (for example when your non-Ada main object does not
provide symbol main), you may also need to instruct the GNAT linker not to include the
standard startup objects by passing the ‘-nostartfiles’ switch to gnatlink.

2.10.2 Calling Conventions

GNAT follows standard calling sequence conventions and will thus interface to any other
language that also follows these conventions. The following Convention identifiers are rec-
ognized by GNAT:

Ada

This indicates that the standard Ada calling sequence will be used and all Ada
data items may be passed without any limitations in the case where GNAT is
used to generate both the caller and callee. It is also possible to mix GNAT
generated code and code generated by another Ada compiler. In this case,
the data types should be restricted to simple cases, including primitive types.
Whether complex data types can be passed depends on the situation. Probably
it is safe to pass simple arrays, such as arrays of integers or floats. Records
may or may not work, depending on whether both compilers lay them out

26

Assembler

Asm

COBOL

Default

External

GNAT User’s Guide

identically. Complex structures involving variant records, access parameters,
tasks, or protected types, are unlikely to be able to be passed.

Note that in the case of GNAT running on a platform that supports HP Ada 83,
a higher degree of compatibility can be guaranteed, and in particular records
are layed out in an identical manner in the two compilers. Note also that
if output from two different compilers is mixed, the program is responsible
for dealing with elaboration issues. Probably the safest approach is to write
the main program in the version of Ada other than GNAT, so that it takes
care of its own elaboration requirements, and then call the GNAT-generated
adainit procedure to ensure elaboration of the GNAT components. Consult the
documentation of the other Ada compiler for further details on elaboration.

However, it is not possible to mix the tasking run time of GNAT and HP Ada
83, All the tasking operations must either be entirely within GNAT compiled
sections of the program, or entirely within HP Ada 83 compiled sections of the
program.

Specifies assembler as the convention. In practice this has the same effect as
convention Ada (but is not equivalent in the sense of being considered the same
convention).

Equivalent to Assembler.

Data will be passed according to the conventions described in section B.4 of the
Ada Reference Manual.

Data will be passed according to the conventions described in section B.3 of the
Ada Reference Manual.

A note on interfacing to a C “varargs” function:

e In C, varargs allows a function to take a variable number of arguments.
There is no direct equivalent in this to Ada. One approach that can be
used is to create a C wrapper for each different profile and then interface
to this C wrapper. For example, to print an int value using printf, create
a C function printfi that takes two arguments, a pointer to a string and
an int, and calls printf. Then in the Ada program, use pragma Import
to interface to printfi.

e [t may work on some platforms to directly interface to a varargs function
by providing a specific Ada profile for a particular call. However, this
does not work on all platforms, since there is no guarantee that the calling
sequence for a two argument normal C function is the same as for calling
a varargs C function with the same two arguments.

Equivalent to C.
Equivalent to C.

C_Plus_Plus (or CPP)

This stands for C++. For most purposes this is identical to C. See the separate
description of the specialized GNAT pragmas relating to C++ interfacing for
further details.

Chapter 2: The GNAT Compilation Model 27

Fortran

Intrinsic

Stdcall

DLL
Win32

Data will be passed according to the conventions described in section B.5 of the
Ada Reference Manual.

This applies to an intrinsic operation, as defined in the Ada Reference Manual.
If a pragma Import (Intrinsic) applies to a subprogram, this means that the
body of the subprogram is provided by the compiler itself, usually by means of
an efficient code sequence, and that the user does not supply an explicit body
for it. In an application program, the pragma may be applied to the following
sets of names:

e Rotate_Left, Rotate_Right, Shift_Left, Shift_Right, Shift_Right_Arithmetic.Jj
The corresponding subprogram declaration must have two formal param-
eters. The first one must be a signed integer type or a modular type with
a binary modulus, and the second parameter must be of type Natural.
The return type must be the same as the type of the first argument. The
size of this type can only be 8, 16, 32, or 64.

e Binary arithmetic operators: “+7 “7 “&7 «/” The corresponding operator
declaration must have parameters and result type that have the same root
numeric type (for example, all three are long_float types). This simplifies
the definition of operations that use type checking to perform dimensional
checks:

type Distance is new Long_Float;

type Time is new Long_Float;

type Velocity is new Long_Float;

function "/" (D : Distance; T : Time)

return Velocity;

pragma Import (Intrinsic, "/");
This common idiom is often programmed with a generic definition and an
explicit body. The pragma makes it simpler to introduce such declara-
tions. It incurs no overhead in compilation time or code size, because it is
implemented as a single machine instruction.

e General subprogram entities, to bind an Ada subprogram declaration to a
compiler builtin by name with back-ends where such interfaces are avail-
able. A typical example is the set of “__builtin” functions exposed by the
GCC back-end, as in the following example:

function builtin_sqrt (F : Float) return Float;

pragma Import (Intrinsic, builtin_sqrt, "__builtin_sqrtf");
Most of the GCC builtins are accessible this way, and as for other import
conventions (e.g. C), it is the user’s responsibility to ensure that the Ada
subprogram profile matches the underlying builtin expectations.

This is relevant only to Windows XP/2000/NT implementations of GNAT, and
specifies that the Stdcall calling sequence will be used, as defined by the NT
API. Nevertheless, to ease building cross-platform bindings this convention will
be handled as a C calling convention on non-Windows platforms.

This is equivalent to Stdcall.
This is equivalent to Stdcall.

28 GNAT User’s Guide

Stubbed This is a special convention that indicates that the compiler should provide a
stub body that raises Program_Error.

GNAT additionally provides a useful pragma Convention_Identifier that can be used
to parameterize conventions and allow additional synonyms to be specified. For example
if you have legacy code in which the convention identifier Fortran77 was used for Fortran,
you can use the configuration pragma:

pragma Convention_Identifier (Fortran77, Fortran);

And from now on the identifier Fortran77 may be used as a convention identifier (for example
in an Import pragma) with the same meaning as Fortran.

2.11 Building Mixed Ada and C++ Programs

A programmer inexperienced with mixed-language development may find that building an
application containing both Ada and C++ code can be a challenge. This section gives a
few hints that should make this task easier. The first section addresses the differences
between interfacing with C and interfacing with C++. The second section looks into the
delicate problem of linking the complete application from its Ada and C++ parts. The last
section gives some hints on how the GNAT run-time library can be adapted in order to
allow inter-language dispatching with a new C++ compiler.

2.11.1 Interfacing to C++

GNAT supports interfacing with the G++ compiler (or any C++ compiler gener-
ating code that is compatible with the G++ Application Binary Interface —see
http://www.codesourcery.com/archives/cxx-abi).

Interfacing can be done at 3 levels: simple data, subprograms, and classes. In the first
two cases, GNAT offers a specific Convention C_Plus_Plus (or CPP) that behaves exactly
like Convention C. Usually, C++ mangles the names of subprograms. To generate proper
mangled names automatically, see Chapter 26 [Generating Ada Bindings for C and C++
headers|, page 267). This problem can also be addressed manually in two ways:

e by modifying the C++ code in order to force a C convention using the extern "C"
syntax.

e by figuring out the mangled name (using e.g. nm) and using it as the Link_Name
argument of the pragma import.

Interfacing at the class level can be achieved by using the GNAT specific pragmas such
as CPP_Constructor. See Section “Interfacing to C++” in GNAT Reference Manual, for
additional information.

2.11.2 Linking a Mixed C++ & Ada Program

Usually the linker of the C++ development system must be used to link mixed applications
because most C++ systems will resolve elaboration issues (such as calling constructors on
global class instances) transparently during the link phase. GNAT has been adapted to
ease the use of a foreign linker for the last phase. Three cases can be considered:

1. Using GNAT and G++ (GNU C++ compiler) from the same GCC installation: The C++
linker can simply be called by using the C++ specific driver called g++.

Chapter 2: The GNAT Compilation Model 29

Note that if the C++ code uses inline functions, you will need to compile your C++ code
with the -fkeep-inline-functions switch in order to provide an existing function
implementation that the Ada code can link with.

$ g++ -c -fkeep-inline-functions filel.C

$ g++ -c -fkeep-inline-functions file2.C

$ gnatmake ada_unit -largs filel.o file2.o --LINK=g++

2. Using GNAT and G++ from two different GCC installations: If both compilers are on

the PATH, the previous method may be used. It is important to note that environment
variables such as C_INCLUDE_PATH, GCC_EXEC_PREFIX, BINUTILS_ROOT, and GCC_ROOT
will affect both compilers at the same time and may make one of the two compilers
operate improperly if set during invocation of the wrong compiler. It is also very
important that the linker uses the proper ‘libgcc.a’ GCC library — that is, the one from
the C++ compiler installation. The implicit link command as suggested in the gnatmake
command from the former example can be replaced by an explicit link command with
the full-verbosity option in order to verify which library is used:

$ gnatbind ada_unit

$ gnatlink -v -v ada_unit filel.o file2.o --LINK=c++
If there is a problem due to interfering environment variables, it can be worked around
by using an intermediate script. The following example shows the proper script to use
when GNAT has not been installed at its default location and g++ has been installed
at its default location:

$ cat ./my_script

#1/bin/sh

unset BINUTILS_ROOT

unset GCC_ROOT

ct++ $x

$ gnatlink -v -v ada_unit filel.o file2.o --LINK=./my_script

3. Using a non-GNU C++ compiler: The commands previously described can be used to

insure that the C++ linker is used. Nonetheless, you need to add a few more parameters

to the link command line, depending on the exception mechanism used.

If the setjmp/longjmp exception mechanism is used, only the paths to the libgcc
libraries are required:

$ cat ./my_script

#!/bin/sh

CC $* ‘gcc -print-file-name=libgcc.a‘ ‘gcc -print-file-name=libgcc_eh.a‘
$ gnatlink ada_unit filel.o file2.o --LINK=./my_script

Where CC is the name of the non-GNU C++ compiler.

If the zero cost exception mechanism is used, and the platform supports automatic
registration of exception tables (e.g. Solaris or IRIX), paths to more objects are re-

quired:
$ cat ./my_script
#!/bin/sh

CC ‘gcc -print-file-name=crtbegin.o‘ $* \

‘gcc -print-file-name=libgcc.a‘ ‘gcc -print-file-name=libgcc_eh.a‘ \

‘gcc -print-file-name=crtend.o°

$ gnatlink ada_unit filel.o file2.o --LINK=./my_script
If the zero cost exception mechanism is used, and the platform doesn’t support auto-
matic registration of exception tables (e.g. HP-UX, Tru64 or AIX), the simple approach
described above will not work and a pre-linking phase using GNAT will be necessary.

30 GNAT User’s Guide

Another alternative is to use the gprbuild multi-language builder which has a large
knowledge base and knows how to link Ada and C++ code together automatically in most
cases.

2.11.3 A Simple Example

The following example, provided as part of the GNAT examples, shows how to achieve
procedural interfacing between Ada and C++ in both directions. The C++ class A has
two methods. The first method is exported to Ada by the means of an extern C wrapper
function. The second method calls an Ada subprogram. On the Ada side, The C++ calls
are modelled by a limited record with a layout comparable to the C++ class. The Ada
subprogram, in turn, calls the C++ method. So, starting from the C++ main program, the
process passes back and forth between the two languages.

Here are the compilation commands:

$ gnatmake -c simple_cpp_interface

$ g++ -c cpp_main.C

$ g+t+ -c ex7.C

$ gnatbind -n simple_cpp_interface

$ gnatlink simple_cpp_interface -o cpp_main --LINK=g++
-lstdc++ ex7.o cpp_main.o

Here are the corresponding sources:

//cpp_main.C
#include "ex7.h"

extern "C" {
void adainit (void);
void adafinal (void);
void methodl (A *t);
}

void methodl (A *t)
{

t->methodl ();
}

int main ()

{
A obj;
adainit ();
obj.method2 (3030);
adafinal ();

}

//ex7.h

class Origin {

public:
int o_value;
};
class A : public Origin {
public:

void methodl (void);
void method2 (int v);

Chapter 2: The GNAT Compilation Model

AO;
int a_value;

};
//ex7.C

#include "ex7.h"
#include <stdio.h>

extern "C" { void ada_method2 (A *t, int v);}

void A::methodl (void)

{
a_value = 2020;
printf ("in A::methodl, a_value = %d \n",a_value);

}
void A::method2 (int v)
{
ada_method2 (this, v);
printf ("in A::method2, a_value = %d \n",a_value);
}
A::A(void)
{

a_value = 1010;
printf ("in A::A, a_value = %d \n",a_value);

}

-- Ada sources
package body Simple_Cpp_Interface is

procedure Ada_Method2 (This : in out A; V : Integer) is
begin

Methodl (This);

This.A_Value := V;
end Ada_Method2;

end Simple_Cpp_Interface;

with System;
package Simple_Cpp_Interface is
type A is limited
record
Vptr : System.Address;
0_Value : Integer;
A_Value : Integer;
end record;
pragma Convention (C, A);

procedure Methodl (This : in out A);
pragma Import (C, Methodl);

procedure Ada_Method2 (This : in out A; V : Integer);
pragma Export (C, Ada_Method?2);

end Simple_Cpp_Interface;

32 GNAT User’s Guide

2.11.4 Interfacing with C++ constructors

In order to interface with C++ constructors GNAT provides the pragma CPP_
Constructor (See Section “Interfacing to C++” in GNAT Reference Manual, for additional
information). In this section we present some common uses of C++ constructors in
mixed-languages programs in GNAT.

Let us assume that we need to interface with the following C++ class:

class Root {
public:
int a_value;
int Db_value;
virtual int Get_Value ();

Root () ; // Default constructor
Root(int v); // 1st non-default constructor
Root(int v, int w); // 2nd non-default constructor

};
For this purpose we can write the following package spec (further information on how
to build this spec is available in Section 2.11.5 [Interfacing with C++ at the Class Level],
page 34 and Chapter 26 [Generating Ada Bindings for C and C++ headers], page 267).

with Interfaces.C; use Interfaces.C;
package Pkg_Root is
type Root is tagged limited record
A_Value : int;
B_Value : int;
end record;
pragma Import (CPP, Root);

function Get_Value (Obj : Root) return int;
pragma Import (CPP, Get_Value);

function Constructor return Root;
pragma Cpp_Constructor (Constructor, "_ZN4RootClEv");

function Constructor (v : Integer) return Root;
pragma Cpp_Constructor (Constructor, "_ZN4RootClEi");

function Constructor (v, w : Integer) return Root;
pragma Cpp_Constructor (Constructor, "_ZN4RootClEii");
end Pkg_Root;

On the Ada side the constructor is represented by a function (whose name is arbitrary)
that returns the classwide type corresponding to the imported C++ class. Although the
constructor is described as a function, it is typically a procedure with an extra implicit
argument (the object being initialized) at the implementation level. GNAT issues the
appropriate call, whatever it is, to get the object properly initialized.

Constructors can only appear in the following contexts:
e On the right side of an initialization of an object of type T.
e On the right side of an initialization of a record component of type T.
e In an Ada 2005 limited aggregate.
e In an Ada 2005 nested limited aggregate.

e Inan Ada 2005 limited aggregate that initializes an object built in place by an extended
return statement.

Chapter 2: The GNAT Compilation Model 33

In a declaration of an object whose type is a class imported from C++, either the default
C++ constructor is implicitly called by GNAT, or else the required C++ constructor must
be explicitly called in the expression that initializes the object. For example:

0Obj1l : Root;

Obj2 : Root := Constructor;

O0bj3 : Root := Comstructor (v => 10);

Obj4 : Root := Comstructor (30, 40);

The first two declarations are equivalent: in both cases the default C++ constructor is
invoked (in the former case the call to the constructor is implicit, and in the latter case
the call is explicit in the object declaration). 0bj3 is initialized by the C++ non-default
constructor that takes an integer argument, and 0bj4 is initialized by the non-default C++
constructor that takes two integers.

Let us derive the imported C++ class in the Ada side. For example:

type DT is new Root with record
C_Value : Natural := 2009;
end record;

In this case the components DT inherited from the C++ side must be initialized by a
C++ constructor, and the additional Ada components of type DT are initialized by GNAT.
The initialization of such an object is done either by default, or by means of a function
returning an aggregate of type DT, or by means of an extension aggregate.

0bj5 : DT;
Obj6 : DT := Function_Returning DT (50);
0bj7 : DT := (Constructor (30,40) with C_Value => 50);

The declaration of 0bj5 invokes the default constructors: the C++ default constructor of
the parent type takes care of the initialization of the components inherited from Root, and
GNAT takes care of the default initialization of the additional Ada components of type DT
(that is, C_Value is initialized to value 2009). The order of invocation of the constructors is
consistent with the order of elaboration required by Ada and C++. That is, the constructor
of the parent type is always called before the constructor of the derived type.

Let us now consider a record that has components whose type is imported from C++.
For example:

type Recl is limited record
Datal : Root := Comnstructor (10);
Value : Natural := 1000;

end record;

type Rec2 (D : Integer := 20) is limited record
Rec : Reci;
Data2 : Root := Constructor (D, 30);
end record;
The initialization of an object of type Rec2 will call the non-default C++ constructors
specified for the imported components. For example:

0bj8 : Rec2 (40);

Using Ada 2005 we can use limited aggregates to initialize an object invoking C++
constructors that differ from those specified in the type declarations. For example:

0bj9 : Rec2 := (Rec => (Datal => Comstructor (15, 16),
others => <>),
others => <>);

34 GNAT User’s Guide

The above declaration uses an Ada 2005 limited aggregate to initialize 0bj9, and the C++
constructor that has two integer arguments is invoked to initialize the Datal component
instead of the constructor specified in the declaration of type Rec1. In Ada 2005 the box in
the aggregate indicates that unspecified components are initialized using the expression (if
any) available in the component declaration. That is, in this case discriminant D is initialized
to value 20, Value is initialized to value 1000, and the non-default C++ constructor that
handles two integers takes care of initializing component Data2 with values 20, 30.

In Ada 2005 we can use the extended return statement to build the Ada equivalent to
C++ non-default constructors. For example:

function Constructor (V : Integer) return Rec2 is
begin
return Obj : Rec2 := (Rec => (Datal => Constructor (V, 20),
others => <>),
others => <>) do
-- Further actions required for construction of
-- objects of type Rec2

endll.:écord;
end Constructor;
In this example the extended return statement construct is used to build in place the
returned object whose components are initialized by means of a limited aggregate. Any
further action associated with the constructor can be placed inside the construct.

2.11.5 Interfacing with C++ at the Class Level

In this section we demonstrate the GNAT features for interfacing with C++ by means of
an example making use of Ada 2005 abstract interface types. This example consists of a
classification of animals; classes have been used to model our main classification of animals,
and interfaces provide support for the management of secondary classifications. We first
demonstrate a case in which the types and constructors are defined on the C++ side and
imported from the Ada side, and latter the reverse case.

The root of our derivation will be the Animal class, with a single private attribute (the
Age of the animal) and two public primitives to set and get the value of this attribute.

class Animal {
public:
virtual void Set_Age (int New_Age);
virtual int Age ();
private:
int Age_Count;
};
Abstract interface types are defined in C++ by means of classes with pure virtual func-
tions and no data members. In our example we will use two interfaces that provide support
for the common management of Carnivore and Domestic animals:

class Carnivore {
public:

virtual int Number_0f_Teeth () = 0;
};

class Domestic {
public:
virtual void Set_Owner (char* Name) = 0;

Chapter 2: The GNAT Compilation Model 35

}s

Using these declarations, we can now say that a Dog is an animal that is both Carnivore
and Domestic, that is:

class Dog : Animal, Carnivore, Domestic {
public:
virtual int Number_0f_Teeth ();
virtual void Set_Owner (char* Name);

Dog(); // Constructor
private:

int Tooth_Count;

char *0Owner;

};

In the following examples we will assume that the previous declarations are located in
a file named animals.h. The following package demonstrates how to import these C++
declarations from the Ada side:

with Interfaces.C.Strings; use Interfaces.C.Strings;
package Animals is
type Carnivore is interface;
pragma Convention (C_Plus_Plus, Carnivore);
function Number_0f_Teeth (X : Carnivore)
return Natural is abstract;

type Domestic is interface;
pragma Convention (C_Plus_Plus, Set_QOwner);
procedure Set_Owner

X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged record
Age : Natural := 0;
end record;
pragma Import (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);
pragma Import (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;
pragma Import (C_Plus_Plus, Age);

type Dog is new Animal and Carnivore and Domestic with record
Tooth_Count : Natural;
Owner : String (1 .. 30);

end record;

pragma Import (C_Plus_Plus, Dog);

function Number_0f_Teeth (A : Dog) return Integer;
pragma Import (C_Plus_Plus, Number_0f_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
pragma Import (C_Plus_Plus, Set_Owner);

function New_Dog return Dog;

pragma CPP_Constructor (New_Dog);

pragma Import (CPP, New_Dog, "_ZN3DogC2Ev");
end Animals;

36 GNAT User’s Guide

Thanks to the compatibility between GNAT run-time structures and the C++ ABI,
interfacing with these C++ classes is easy. The only requirement is that all the primitives
and components must be declared exactly in the same order in the two languages.

Regarding the abstract interfaces, we must indicate to the GNAT compiler by means of
a pragma Convention (C_Plus_Plus), the convention used to pass the arguments to the
called primitives will be the same as for C++. For the imported classes we use pragma
Import with convention C_Plus_Plus to indicate that they have been defined on the C++
side; this is required because the dispatch table associated with these tagged types will be
built in the C++ side and therefore will not contain the predefined Ada primitives which
Ada would otherwise expect.

As the reader can see there is no need to indicate the C++ mangled names associated
with each subprogram because it is assumed that all the calls to these primitives will be
dispatching calls. The only exception is the constructor, which must be registered with the
compiler by means of pragma CPP_Constructor and needs to provide its associated C++
mangled name because the Ada compiler generates direct calls to it.

With the above packages we can now declare objects of type Dog on the Ada side and
dispatch calls to the corresponding subprograms on the C++ side. We can also extend the
tagged type Dog with further fields and primitives, and override some of its C++ primitives
on the Ada side. For example, here we have a type derivation defined on the Ada side that
inherits all the dispatching primitives of the ancestor from the C++ side.

with Animals; use Animals;
package Vaccinated_Animals is

type Vaccinated_Dog is new Dog with null record;

function Vaccination_Expired (A : Vaccinated_Dog) return Boolean;
end Vaccinated_Animals;

It is important to note that, because of the ABI compatibility, the programmer does
not need to add any further information to indicate either the object layout or the dispatch
table entry associated with each dispatching operation.

Now let us define all the types and constructors on the Ada side and export them to
C++, using the same hierarchy of our previous example:

with Interfaces.C.Strings;
use Interfaces.C.Strings;
package Animals is
type Carnivore is interface;
pragma Convention (C_Plus_Plus, Carnivore);
function Number_0f_Teeth (X : Carnivore)
return Natural is abstract;

type Domestic is interface;
pragma Convention (C_Plus_Plus, Set_Owner);
procedure Set_Owner

X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged record
Age : Natural := 0;
end record;
pragma Convention (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);

Chapter 2: The GNAT Compilation Model 37

pragma Export (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;
pragma Export (C_Plus_Plus, Age);

type Dog is new Animal and Carnivore and Domestic with record
Tooth_Count : Natural;
Owner : String (1 .. 30);

end record;

pragma Convention (C_Plus_Plus, Dog);

function Number_0f_Teeth (A : Dog) return Integer;
pragma Export (C_Plus_Plus, Number_0f_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
pragma Export (C_Plus_Plus, Set_Owner);

function New_Dog return Dog’Class;
pragma Export (C_Plus_Plus, New_Dog);
end Animals;

Compared with our previous example the only difference is the use of pragma Export to
indicate to the GNAT compiler that the primitives will be available to C++. Thanks to the
ABI compatibility, on the C++ side there is nothing else to be done; as explained above,
the only requirement is that all the primitives and components are declared in exactly the
same order.

For completeness, let us see a brief C++ main program that uses the declarations available
in animals.h (presented in our first example) to import and use the declarations from the
Ada side, properly initializing and finalizing the Ada run-time system along the way:

#include "animals.h"
#include <iostream>
using namespace std;

void Check_Carnivore (Carnivore *obj) {...
void Check_Domestic (Domestic *obj) {.
void Check_Animal (Animal *obj) {...
void Check_Dog (Dog *obj) {

SRS

extern "C" {
void adainit (void);
void adafinal (void);
Dog* new_dog () ;

}

void test ()

{
Dog *obj = new_dog(); // Ada constructor
Check_Carnivore (obj); // Check secondary DT
Check_Domestic (obj); // Check secondary DT
Check_Animal (obj); // Check primary DT
Check_Dog (obj); // Check primary DT

}

int main ()

{
adainit (); test(); adafinal ();
return O;

38 GNAT User’s Guide

}

2.12 Comparison between GNAT and C/C++ Compilation
Models

The GNAT model of compilation is close to the C and C++ models. You can think of Ada
specs as corresponding to header files in C. As in C, you don’t need to compile specs; they
are compiled when they are used. The Ada with is similar in effect to the #include of a C
header.

One notable difference is that, in Ada, you may compile specs separately to check them
for semantic and syntactic accuracy. This is not always possible with C headers because
they are fragments of programs that have less specific syntactic or semantic rules.

The other major difference is the requirement for running the binder, which performs two
important functions. First, it checks for consistency. In C or C++, the only defense against
assembling inconsistent programs lies outside the compiler, in a makefile, for example. The
binder satisfies the Ada requirement that it be impossible to construct an inconsistent
program when the compiler is used in normal mode.

The other important function of the binder is to deal with elaboration issues. There
are also elaboration issues in C++ that are handled automatically. This automatic handling
has the advantage of being simpler to use, but the C++ programmer has no control over
elaboration. Where gnatbind might complain there was no valid order of elaboration, a
C++ compiler would simply construct a program that malfunctioned at run time.

2.13 Comparison between GNAT and Conventional Ada
Library Models

This section is intended for Ada programmers who have used an Ada compiler implementing
the traditional Ada library model, as described in the Ada Reference Manual.

In GNAT, there is no “library” in the normal sense. Instead, the set of source files
themselves acts as the library. Compiling Ada programs does