
NAME
barcode − a stand alone program to run the barcode library

SYNOPSIS
barcode [−b - | string] [−e encoding] [−o - | outfile] [−w N] [−h N] [−x N] [−y N] [−l N] [−c N]

DESCRIPTION
The information below is extracted from the texinfo file, which is the preferred source of information.

The barcode program is a front-end to access some features of the library from the command line. It is
able to read user supplied strings from the command line or a data file (standard input by default) and
encode all of them.

OPTIONS
barcode accepts the following options:

--help or -h
Print a usage summary and exit.

-i filename
Identify a file where strings to be encoded are read from. If missing (and if -b is not used) it
defaults to standard input. Each data line of the input file will be used to create one barcode output.

-o filename
Output file. It defaults to standard output.

-b string
Specify a single ‘‘barcode’’ string to be encoded. The option can be used multiple times in order
to encode multiple strings (this will result in multi-page postscript output or a table of barcodes if
-t is specified). The strings must match the encoding chosen; if it doesn’t match the program will
print a warning to stderr and generate ‘‘blank’’ output (although not zero-length). Please note that
a string including spaces or other special characters must be properly quoted.

-e encoding
encoding is the name of the chosen encoding format being used. It defaults to the value of the
environment variable BARCODE_ENCODING or to auto detection if the environment is also
unset.

-g geometry

The geometry argument is of the form ‘‘[<width> x <height>] [+ <xmargin> + <ymargin>]’’ (with no inter-
vening spaces). Unspecified margin values will result in no margin; unspecified size results in default size.
The specified values represent print points by default, and can be inches, millimeters or other units accord-
ing to the -u option or the BARCODE_UNIT environment variable. The argument is used to place the
printout code on the page. Note that an additional white margin of 10 points is added to the printout. If the
option is unspecified, BARCODE_GEOMETRY is looked up in the environment, if missing a default size
and no margin (but the default 10 points) are used.

-t table-geometry
Used to print several barcodes to a single page, this option is meant to be used to print stickers.
The argument is of the form ‘‘<columns> x <lines> [+ <leftmargin> + <bottommargin> [- <right-
margin> [- <topmargin>]]]’’ (with no intervening spaces); if missing, the top and right margin will
default to be the same as the bottom and left margin. The margins are specified in print points or in
the chosen unit (see -u below). If the option is not specified, BARCODE_TABLE is looked up in
the environment, otherwise no table is printed and each barcode will get its own page.

-m margin(s)
Specifies an internal margin for each sticker in the table. The argument is of the form ‘‘<xmar-
gin>,<ymargin>’’ and the margin is applied symmetrically to the sticker. If unspecified, the envi-
ronment variable BARCODE_MARGIN is used or a default internal margin of 10 points is used.

-n ‘‘Numeric’’ output: don’t print the ASCII form of the code, only the bars.

-c No checksum character (for encodings that allow it, like code 39, other codes, like UPC or EAN,
ignore this option).

1

BARCODE(1) GNU barcode BARCODE(1)

-E Encapsulated postscript (default is normal postscript. When the output is generated a EPS only one
text string is encoded.

-p pagesize
Specify a non-default page size. The page size can be specified in millimeters, inches or plain
numbers (for example: "210x297mm", "8.5x11in", "595x842"). A page specification as numbers
will be interpreted according to the current unit specification (see -u below). If libpaper is avail-
able, you can also specify the page size with its name, like "A3" or "letter" (libpaper is a standard
component of Debian GNU/Linux, but may be missing elsewhere). The default page size is your
system-wide default if libpaper is there, A4 otherwise.

-u unit

Choose the unit used in size specifications. Accepted values are ‘‘mm’’, ‘‘cm’’, ‘‘in’’ and ‘‘pt’’. By default,
the program will check BARCODE_UNIT in the environment, and assume points otherwise (this behaviour
is compatible with 0.92 and previous versions. If -u appears more than once, each instance will modified
the behaviour for the arguments at its right, as the command line is processes left to right. The program
internally works with points, and any size is approximated to the nearest multiple of one point. The -u
option affect -g (geometry), -t (table) and -p (page size).

ENCODING TYPES
The program encodes text strings passed either on the command line (with -b) or retrieved from standard
input. The text representation is interpreted according to the following rules. When auto-detection of the
encoding is enabled (i.e, no explicit encoding type is specified), the encoding types are scanned to find one
that can digest the text string. The following list of supported types is sorted in the same order the library
uses when auto-detecting a suitable encoding for a string.

UPC

The UPC frontend accepts only strings made up of digits (and, if a supplemental encoding is used, a blank
to separate it). It accepts strings of 11 digits (UPC-A) or 6 digits (UPC-E). The 12th digit of UPC-A is the
checksum and is added by the library, if you pass a 12-digit string it will be rejected as invalid. For UPC-A,
a trailing string of 2 digits or 5 digits is accepted as well. Therefore, valid strings look like one of the fol-
lowing: ‘‘01234567890’’ (UPC-A), ‘‘012345’’ (UPC-E), ‘‘01234567890 12’’ (UPC-A, add-2) and
‘‘01234567890 12345’’ (UPC-A add-5).

EAN

The EAN frontend is similar to UPC; it accepts strings of digits, 12 or 7 characters long, the checksum digit
is added by the library and a string of 13 or 8 characters is rejected. The add-2 and add-5 extension are
accepted for the EAN13 encoding. Valid strings look like one of the following: ‘‘123456789012’’
(EAN-13), ‘‘1234567’’ (EAN-8), ‘‘123456789012 12’’ (EAN-13 with add-2) and ‘‘123456789012 12345’’
(EAN-13 with add-5).

ISBN

ISBN numbers are encoded as EAN-13 symbols, with an optional add-5 trailer. The ISBN frontend of the
library accepts real ISBN numbers and deals with any hyphen and, if present, the ISBN checksum character
before encoding data. Valid representations for ISBN strings are for example: ‘‘1-56592-292-1’’,
‘‘3-89721-122-X’’ and ‘‘3-89721-122-X 06900’’.

code 128-B

This encoding can represent all of the printing ASCII characters, from the space (32) to DEL (127). The
checksum digit is mandatory in this encoding.

code 128-C

The ‘‘C’’ variation of Code-128 uses Code-128 symbols to represent two digits at a time (Code-128 is made

2 October 1999 GNU

BARCODE(1) GNU barcode BARCODE(1)

up of 104 symbols whose interpretation is controlled by the start symbol being used). Code 128-C is thus
the most compact way to represent any even number of digits. The encoder refuses to deal with an odd
number of digits because the caller is expected to provide proper padding to an even number of digits.
(Since Code-128 includes control symbols to switch charset, it is theoretically possible to represent the odd
digit as a Code 128-A or 128-B symbol, but this tool doesn’t currently implement this option).

code 128 raw

Code-128 output represented symbol-by-symbol in the input string. To override part of the problems out-
lined below in specifying code128 symbols, this pseudo-encoding allows the used to specify a list of
code128 symbols separated by spaces. Each symbol is represented by a number in the range 0-105. The list
should include the leading character.The checksum and the stop character are automatically added by the
library. Most likely this pseudo-encoding will be used with BARCODE_NO_ASCII and some external pro-
gram to supply the printed text.

code 39

The code-39 standard can encode uppercase letters, digits, the blank space, plus, minus, dot, star, dollar,
slash, percent. Any string that is only composed of such characters is accepted by the code-39 encoder. To
avoid loosing information, the encoder refuses to encode mixed-case strings (a lowercase string is nonethe-
less accepted as a shortcut, but is encoded as uppercase).

interleaved 2 of 5

This encoding can only represent an even number of digits (odd digits are represented by bars, and even
digits by the interleaving spaces). The name stresses the fact that two of the five items (bars or spaces) allo-
cated to each symbol are wide, while the rest are narrow. The checksum digit is optional (can be disabled
via BARCODE_NO_CHECKSUM). Since the number of digits, including the checksum, must be even, a
leading zero is inserted in the string being encoded if needed (this is specifically stated in the specs I have
access to).

code 128

Automatic selection between alphabet A, B and C of the Code-128 standard. This encoding can represent
all ASCII symbols, from 0 (NUL) to 127 (DEL), as well as four special symbols, named F1, F2, F3, F4.
The set of symbols available in this encoding is not easily represented as input to the barcode library, so the
following convention is used. In the input string, which is a C-language null-terminated string, the NUL
char is represented by the value 128 (0x80, 0200) and the F1-F4 characters are represented by the values
193-196 (0xc1-0xc4, 0301-0304). The values have been chosen to ease their representation as escape
sequences.

Since the shell doesn’t seem to interpret escape sequences on the command line, the "-b" option cannot be
easily used to designate the strings to be encoded. As a workaround you can resort to the command echo,
either within backticks or used separately to create a file that is then fed to the standard-input of barcode --
assuming your echo command processes escape sequences. The newline character is especially though to
encode (but not impossible unless you use a csh variant.

These problems only apply to the command-line tool; the use of library functions doesn’t giv e any problem.
In needed, you can use the ‘‘code 128 raw’’ pseudo-encoding to represent code128 symbols by their numer-
ical value. This encoding is used late in the auto-selection mechanism because (almost) any input string can
be represented using code128.

Codabar

Codabar can encode the ten digits and a few special symbols (minus, plus, dollar, colon, bar, dot). The

GNU October 1999 3

BARCODE(1) GNU barcode BARCODE(1)

characters ‘‘A’’, ‘‘B’’, ‘‘C’’ and ‘‘D’’ are used to represent four different start/stop characters. The input
string to the barcode library can include the start and stop characters or not include them (in which case
‘‘A’ ’ is used as start and ‘‘B’’ as stop). Start and stop characters in the input string can be either all lower-
case or all uppercase and are always printed as uppercase.

Plessey

Plessey barcodes can encode all the hexadecimal digits. Alphabetic digits in the input string must either be
all lowercase or all uppercase. The output text is always uppercase.

MSI

MSI can only encode the decimal digits. While the standard specifies either one or two check digits, the
current implementation in this library only generates one check digit.

BUGS
The current management of borders/margins is far from optimal. The ‘‘default’’ margin applied by the
library interferes with the external representation, but I feel it is mandatory to avoid creating barcode output
with no surrounding white space (the problem is especially relevant for EPS output).

EAN-128 is not (yet) supported. I plan to implement it pretty soon and then bless the package as version
1.0.

SEE ALSO
barcode(3)

AUTHORS
Alessandro Rubini <rubini@gnu.org> (maintainer)

Leonid A. Broukhis <leob@mailcom.com> (several encodings)

4 October 1999 GNU

	BARCODE (1)

