GNU ed

The GNU line editor
for GNU ed version 1.14.1, 10 January 2017

by Andrew L. Moore, Francois Pinard, and Antonio Diaz Diaz

Copyright (©) 1993, 1994, 2006-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts.

Table of Contents

8

9

Overview............. . i 2
Introduction to line editing..................... 3
Invoking edl 7
Line addressing 8
Regular expressions............................ 10
Commands...................................... 12
Limitations, 17
Diagnostics 18
Reporting bugs.................. 19

10 GNU Free Documentation License.......... 20

Copyright (©) 1993, 1994, 2006-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

1 Overview

ed is a line-oriented text editor. It is used to create, display, modify and otherwise manip-
ulate text files. red is a restricted ed: it can only edit files in the current directory and
cannot execute shell commands.

If invoked with a file argument, then a copy of file is read into the editor’s buffer.
Changes are made to this copy and not directly to file itself. Upon quitting ed, any changes
not explicitly saved with a ‘w’ command are lost.

Editing is done in two distinct modes: command and input. When first invoked, ed is in
command mode. In this mode commands are read from the standard input and executed
to manipulate the contents of the editor buffer. A typical command might look like:

,s/0ld/new/g

which replaces all occurences of the string old with new.

[}

When an input command, such as ‘a’ (append), ‘i’ (insert) or ‘c’ (change), is given,
ed enters input mode. This is the primary means of adding text to a file. In this mode,
no commands are available; instead, the standard input is written directly to the editor
buffer. A line consists of the text up to and including a newline character. Input mode is
terminated by entering a single period (‘.”) on a line.

All ed commands operate on whole lines or ranges of lines; e.g., the ‘d’ command deletes
lines; the ‘m’ command moves lines, and so on. It is possible to modify only a portion of a
line by means of replacement, as in the example above. However even here, the ‘s’ command
is applied to whole lines at a time.

In general, ed commands consist of zero or more line addresses, followed by a single
character command and possibly additional parameters; i.e., commands have the structure:

[address[,address]] command[parameters]

The addresses indicate the line or range of lines to be affected by the command. If fewer
addresses are given than the command accepts, then default addresses are supplied.

2 Introduction to line editing

ed was created, along with the Unix operating system, by Ken Thompson and Dennis
Ritchie. It is the refinement of its more complex, programmable predecessor, QED, to which
Thompson and Ritchie had already added pattern matching capabilities (see Chapter 5
[Regular expressions|, page 10).

For the purposes of this tutorial, a working knowledge of the Unix shell sh and the Unix
file system is recommended, since ed is designed to interact closely with them. (See bash,
for details about bash).

The principal difference between line editors and display editors is that display editors
provide instant feedback to user commands, whereas line editors require sometimes lengthy
input before any effects are seen. The advantage of instant feedback, of course, is that if a
mistake is made, it can be corrected immediately, before more damage is done. Editing in
ed requires more strategy and forethought; but if you are up to the task, it can be quite
efficient.

Much of the ed command syntax is shared with other Unix utilities.

As with the shell, RETURN (the carriage-return key) enters a line of input. So when we
speak of "entering" a command or some text in ed, RETURN is implied at the end of each line.
Prior to typing RETURN, corrections to the line may be made by typing either BACKSPACE
to erase characters backwards, or CONTROL-u (i.e., hold the CONTROL key and type u) to
erase the whole line.

When ed first opens, it expects to be told what to do but doesn’t prompt us like the
shell. So let’s begin by telling ed to do so with the P (prompt) command:

$ ed
P
*

By default, ed uses asterisk (‘*’) as command prompt to avoid confusion with the shell
command prompt (‘$’).

We can run Unix shell (sh) commands from inside ed by prefixing them with ! (excla-
mation mark, aka "bang"). For example:

*xldate

Mon Jun 26 10:08:41 PDT 2006

]

*!1for s in hello world; do echo $s; done
hello

world

!

*

So far, this is no different from running commands in the Unix shell. But let’s say we
want to edit the output of a command, or save it to a file. First we must capture the
command output to a temporary location called a buffer where ed can access it. This is
done with ed’s r command (mnemonic: read):

*r lcal —m
137

Chapter 2: Introduction to line editing 4

*

Here ed is telling us that it has just read 137 characters into the editor buffer - i.e., the
output of the cal command, which prints a simple ASCII calendar. To display the buffer
contents we issue the p (print) command (not to be confused with the prompt command,
which is uppercase!). To indicate the range of lines in the buffer that should be printed, we
prefix the command with , (comma) which is shorthand for "the whole buffer":

*,p
June 2006
Mo Tu We Th Fr Sa Su
1 2 3 4

5 6 7 8 910 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

*
Now let’s write the buffer contents to a file named junk with the w (write) command:

*w junk
137
*

Need we say? It’s good practice to frequently write the buffer contents, since unwritten
changes to the buffer will be lost when we exit ed.

The sample sessions below illustrate some basic concepts of line editing with ed. We
begin by creating a file, ‘sonnet’, with some help from Shakespeare. As with the shell, all
input to ed must be followed by a newline character. Commands beginning with ‘#’ are
taken as comments and ignored. Input mode lines that begin with ‘#” are just more input.

$ ed

The ’a’ command is for appending text to the editor buffer.
a

No more be grieved at that which thou hast done.

Roses have thorns, and filvers foutians mud.

Clouds and eclipses stain both moon and sun,

And loathsome canker lives in sweetest bud.

Entering a single period on a line returns ed to command mode.
Now write the buffer to the file ‘sonnet’ and quit:

W sonnet

183

ed reports the number of characters written.

q

$ 1s -1

total 2

-TW-IW-Ir--— 1 alm 183 Nov 10 01:16 sonnet
$

In the next example, some typos are corrected in the file ‘sonnet’.

Chapter 2: Introduction to line editing 5

$ ed sonnet

183

Begin by printing the buffer to the terminal with the ‘p’ command.

The ’,’ means "all lines".

P

No more be grieved at that which thou hast done.

Roses have thorns, and filvers foutians mud.

Clouds and eclipses stain both moon and sun,

And loathsome canker lives in sweetest bud.

Select line 2 for editing.

2

Roses have thorns, and filvers foutians mud.

Use the substitute command, ‘s’, to replace ’filvers’ with ’silver’,

and print the result.

s/filvers/silver/p

Roses have thorns, and silver foutians mud.

And correct the spelling of ’fountains’.

s/utia/untai/p

Roses have thorns, and silver fountains mud.

w sonnet

183

q

$

Since ed is line-oriented, we have to tell it which line, or range of lines we want to edit.

In the above example, we do this by specifying the line’s number, or sequence in the buffer.
Alternatively, we could have specified a unique string in the line, e.g., ‘/filvers/’, where
the ‘/’s delimit the string in question. Subsequent commands affect only the selected line,
a.k.a. the current line. Portions of that line are then replaced with the substitute command,
whose syntax is ‘s/old/new/’.

Although ed accepts only one command per line, the print command ‘p’ is an exception,
and may be appended to the end of most commands.

In the next example, a title is added to our sonnet.

$ ed sonnet
183
a
Sonnet #50
Y
No more be grieved at that which thou hast done.
Roses have thorns, and silver fountains mud.
Clouds and eclipses stain both moon and sun,
And loathsome canker lives in sweetest bud.
Sonnet #50
The title got appended to the end; we should have used ’0a’
to append "before the first line".
Move the title to its proper place.

5mOp

Sonnet #50

The title is now the first line, and the current address has been
set to the address of this line as well.

»P

Sonnet #50
No more be grieved at that which thou hast done.
Roses have thorns, and silver fountains mud.
Clouds and eclipses stain both moon and sun,
And loathsome canker lives in sweetest bud.
wq sonnet

195

$

When ed opens a file, the current address is initially set to the address of the last line
of that file. Similarly, the move command ‘m’ sets the current address to the address of the
last line moved.

Related programs or routines are vi (1), sed (1), regex (3), sh (1). Relevant docu-
ments are:

Unix User’s Manual Supplementary Documents: 12 — 13

B. W. Kernighan and P. J. Plauger: "Software Tools in Pascal", Addison-
Wesley, 1981.

3 Invoking ed

The format for running ed is:
ed [options] [file]
red [options] [file]
file specifies the name of a file to read. If file is prefixed with a bang (!), then it is
interpreted as a shell command. In this case, what is read is the standard output of file
executed via sh (1). To read a file whose name begins with a bang, prefix the name with
a backslash (\). The default filename is set to file only if it is not prefixed with a bang.

ed supports the following options:

-h

--help Print an informative help message describing the options and exit.

-V

-—version
Print the version number of ed on the standard output and exit.

-G

-—traditiomnal
Forces backwards compatibility. This affects the behavior of the ed commands
‘G, V0, f7, 1, ‘m’, ‘67 and 1YL If the default behavior of these commands does
not seem familiar, then try invoking ed with this switch.

-1

--loose-exit-status
Don’t exit with bad status if a command happens to "fail" (for example if a
substitution command finds nothing to replace). This can be useful when ed is
invoked as the editor for crontab.

-p string
--prompt=string
Specifies a command prompt. This may be toggled on and off with the ‘P’

command.

-r

--restricted
Run in restricted mode. This mode disables editing of files out of the current
directory and execution of shell commands.

-s

--quiet

--silent Suppresses the printing of byte counts by ‘e’, ‘E’, ‘r’, and ‘w’ commands and of
the ‘I’ prompt after a ‘!’ command. This option may be useful if ed’s standard
input is from a script.

-v

--verbose
Verbose mode; prints error explanations. This may be toggled on and off with
the ‘H’ command.

Exit status: 0 if no errors occurred; otherwise >0.

4 Line addressing

An address represents the number of a line in the buffer. ed maintains a current address
which is typically supplied to commands as the default address when none is specified.
When a file is first read, the current address is set to the address of the last line of the file.
In general, the current address is set to the address of the last line affected by a command.

One exception to the rule that addresses represent line numbers is the address ‘0’ (zero).
This means "before the first line", and is valid wherever it makes sense.

An address range is two addresses separated either by a comma (‘,”) or a semicolon (‘;’).
In a semicolon-delimited range, the current address (‘.”) is set to the first address before the
second address is calculated. This feature can be used to set the starting line for searches.
The value of the first address in a range cannot exceed the value of the second.

Addresses can be omitted on either side of the comma or semicolon separator. If only
the first address is given in a range, then the second address is set to the given address.
If only the second address is given, the resulting address pairs are ‘1,addr’ and ‘. ;addr’
respectively. If a n-tuple of addresses is given where n > 2, then the corresponding range is
determined by the last two addresses in the n-tuple. If only one address is expected, then
the last address is used. It is an error to give any number of addresses to a command that
requires zero addresses.

A line address is constructed as follows:

The current line (address) in the buffer.

$ The last line in the buffer.

n The nth line in the buffer, where n is a number in the range ‘0,$’.

+n The nth next line, where n is a non-negative number.

-n The nth previous line, where n is a non-negative number.

+ The next line. This is equivalent to ‘+1’ and may be repeated with cumulative
effect.

- The previous line. This is equivalent to ‘-1’ and may be repeated with cumu-
lative effect.

, The first through last lines in the buffer. This is equivalent to the address range
‘1,%.

; The current through last lines in the buffer. This is equivalent to the address
range ‘. ;$’.

/re/ The next line containing the regular expression re. The search wraps to the

beginning of the buffer and continues down to the current line, if necessary. A
null re ‘//’ repeats the last search.

?re? The previous line containing the regular expression re. The search wraps to the
end of the buffer and continues up to the current line, if necessary. A null re
“??’ repeats the last search.

’x The apostrophe-x character pair addresses the line previously marked by a ‘k’
(mark) command, where ‘x’ is a lower case letter from the portable character
set.

Addresses can be followed by one or more address offsets, optionally separated by white-
space. Offsets are constructed as follows:

e ‘+’ or ‘=’ followed by a number adds or subtracts the indicated number of lines to or
from the address.

e ‘+’ or ‘=’ not followed by a number adds or subtracts 1 to or from the address.
e A number adds the indicated number of lines to the address.
It is not an error if an intermediate address value is negative or greater than the address
of the last line in the buffer. It is an error if the final address value is negative or greater

than the address of the last line in the buffer. It is an error if a search for a re fails to find
a matching line.

10

5 Regular expressions

Regular expressions are patterns used in selecting text. For example, the ed command

g/string/

prints all lines containing string. Regular expressions are also used by the ‘s’ command for
selecting old text to be replaced with new text.

In addition to a specifying string literals, regular expressions can represent classes of

strings.

Strings thus represented are said to be matched by the corresponding regular

expression. If it is possible for a regular expression to match several strings in a line, then
the left-most longest match is the one selected.

The following symbols are used in constructing regular expressions:

\c

Any character ¢ not listed below, including ‘{’, ‘}’, <C,)7, ‘<’ and “>’, matches
itself.

Any backslash-escaped character ¢, other than ‘{’, ‘}’, ‘(C,)7, <’, >, ‘b’, ‘B’,
‘w, ‘W, ‘+” and ‘?’, matches itself.

Matches any single character.

[char-class]

Matches any single character in char-class. To include a ‘]’ in char-class, it must
be the first character. A range of characters may be specified by separating
the end characters of the range with a ‘-’, e.g., ‘a-z’ specifies the lower case
characters. The following literal expressions can also be used in char-class to
specify sets of characters:

[:alnum:] [:cntrl:] [:lower:] [:space:]

[:alpha:] [:digit:] [:print:] [:upper:]

[:blank:] [:graph:] [:punct:] [:xdigit:]
If ‘-’ appears as the first or last character of char-class, then it matches itself.
All other characters in char-class match themselves.
Patterns in char-class of the form:

[.col-elm.]

[=col-elm=]
where col-elm is a collating element are interpreted according to locale (5).
See regex (3) for an explanation of these constructs.

[~ char-class]

\(re\)

Matches any single character, other than newline, not in char-class. char-class
is defined as above.

If =’ is the first character of a regular expression, then it anchors the regular
expression to the beginning of a line. Otherwise, it matches itself.

If ‘$’ is the last character of a regular expression, it anchors the regular expres-
sion to the end of a line. Otherwise, it matches itself.

Defines a (possibly null) subexpression re. Subexpressions may be nested. A
subsequent backreference of the form ‘\n’, where n is a number in the range

\{n,m\}
\{n,\}
\{n\}

\<
\>

11

[1,9], expands to the text matched by the nth subexpression. For example, the
regular expression ‘\ (a.c\)\1” matches the string ‘abcabc’, but not ‘abcadc’.
Subexpressions are ordered relative to their left delimiter.

Matches the single character regular expression or subexpression immediately
preceding it zero or more times. If ‘*’ is the first character of a regular ex-
pression or subexpression, then it matches itself. The ‘*’ operator sometimes
yields unexpected results. For example, the regular expression ‘b*’ matches the
beginning of the string ‘abbb’, as opposed to the substring ‘bbb’, since a null
match is the only left-most match.

Matches the single character regular expression or subexpression immediately
preceding it at least n and at most m times. If m is omitted, then it matches
at least n times. If the comma is also omitted, then it matches exactly n times.
If any of these forms occurs first in a regular expression or subexpression, then
it is interpreted literally (i.e., the regular expression ‘\{2\}” matches the string
‘{2}’, and so on).

Anchors the single character regular expression or subexpression immediately
following it to the beginning (in the case of ‘\<’) or ending (in the case of ‘\>’) of
a word, i.e., in ASCII, a maximal string of alphanumeric characters, including
the underscore (_).

The following extended operators are preceded by a backslash ‘\’ to distinguish them
from traditional ed syntax.

\:
\;
\?

\+

\b

\B
\w
\W

Unconditionally matches the beginning ‘\ ¢’ or ending ‘\’’ of a line.

Optionally matches the single character regular expression or subexpression im-
mediately preceding it. For example, the regular expression ‘a[bd] \7c’ matches
the strings ‘abc’, ‘adc’ and ‘ac’. If ‘\?’ occurs at the beginning of a regular
expressions or subexpression, then it matches a literal ‘?’.

Matches the single character regular expression or subexpression immediately
preceding it one or more times. So the regular expression ‘a+’ is shorthand for
‘aax’. If ‘\+’ occurs at the beginning of a regular expression or subexpression,
then it matches a literal ‘+’.

Matches the beginning or ending (null string) of a word. Thus the regular
expression ‘\bhello\b’ is equivalent to ‘\<hello\>’. However, ‘\b\b’ is a valid
regular expression whereas ‘\<\>’ is not.

Matches (a null string) inside a word.
Matches any character in a word.

Matches any character not in a word.

12

6 Commands

All ed commands are single characters, though some require additonal parameters. If a
command’s parameters extend over several lines, then each line except for the last must be
terminated with a backslash (‘\’).

In general, at most one command is allowed per line. However, most commands accept
a print suffix, which is any of ‘p’ (print), ‘1’ (list), or ‘n’ (enumerate), to print the last line
affected by the command. It is not portable to give more than one print suffix, but ed
allows any combination of non-repeated print suffixes and combines their effects.

An interrupt (typically Control-C) has the effect of aborting the current command and
returning the editor to command mode.

ed recognizes the following commands. The commands are shown together with the
default address or address range supplied if none is specified (in parenthesis).

(Da Appends text to the buffer after the addressed line. The address ‘0’ (zero) is
valid for this command; it places the entered text at the beginning of the buffer.
Text is entered in input mode. The current address is set to the address of the
last line entered or, if there were none, to the addressed line.

(.,)c Changes lines in the buffer. The addressed lines are deleted from the buffer,
and text is inserted in their place. Text is entered in input mode. The current
address is set to the address of the last line entered or, if there were none, to
the new address of the line after the last line deleted; if the lines deleted were
originally at the end of the buffer, the current address is set to the address of
the new last line; if no lines remain in the buffer, the current address is set to
Z€ro.

(.,.)d Deletes the addressed lines from the buffer. The current address is set to the
new address of the line after the last line deleted; if the lines deleted were
originally at the end of the buffer, the current address is set to the address of
the new last line; if no lines remain in the buffer, the current address is set to
Z€ro.

e file Edits file, and sets the default filename. If file is not specified, then the default
filename is used. Any lines in the buffer are deleted before the new file is read.
The current address is set to the address of the last line in the buffer.

If file is prefixed with a bang (!), then it is interpreted as a shell command
whose output is to be read, (see [shell escape command]|, page 16, ‘!’ below).
In this case the default filename is unchanged.

A warning is printed if any changes have been made in the buffer since the last
‘w’ command that wrote the entire buffer to a file.

E file Edits file unconditionally. This is similar to the ‘€’ command, except that
unwritten changes are discarded without warning.

f file Sets the default filename to file. If file is not specified, then the default un-
escaped filename is printed.

Chapter 6: Commands 13

(1,%$)g/re/command-list

(1,$)G/re/

(i

Gy *1)j

()kx

Global command. The global command makes two passes over the file. On the
first pass, all the addressed lines matching a regular expression re are marked.
Then, going sequentially from the beginning of the file to the end of the file,
the given command-list is executed for each marked line, with the current ad-
dress set to the address of that line. Any line modified by the command-list is
unmarked. The final value of the current address is the value assigned by the
last command in the last command-list executed. If there were no matching
lines, the current address is unchanged.

The first command of command-list must appear on the same line as the ‘g’

command. All lines of a multi-line command-list except the last line must be
terminated with a backslash (‘\’). Any commands are allowed, except for ‘g’,
‘G’, ‘v’, and ‘V’. The ‘.’ terminating the input mode of commands ‘a’; ‘c’, and
‘i’ can be omitted if it would be the last line of command-list. By default, a
newline alone in command-list is equivalent to a ‘p’ command. If ed is invoked
with the command-line option ‘-G’, then a newline in command-list is equivalent
to a ‘.+1p’ command.

Interactive global command. Interactively edits the addressed lines matching a
regular expression re. For each matching line, the line is printed, the current
address is set, and the user is prompted to enter a command-list. The final value
of the current address is the value assigned by the last command executed. If
there were no matching lines, the current address is unchanged.

The format of command-list is the same as that of the ‘g’ command. A new-
line alone acts as a null command list. A single ‘&’ repeats the last non-null
command list.

Prints an explanation of the last error.

Toggles the printing of error explanations. By default, explanations are not
printed. It is recommended that ed scripts begin with this command to aid in
debugging.

Inserts text in the buffer before the addressed line. The address ‘0’ (zero) is
valid for this command; it is equivalent to address ‘1’. Text is entered in input
mode. The current address is set to the address of the last line entered or, if
there were none, to the addressed line.

Joins the addressed lines, replacing them by a single line containing their joined
text. If only one address is given, this command does nothing. If lines are joined,
the current address is set to the address of the joined line. Else, the current
address is unchanged.

Marks a line with a lower case letter ‘x’. The line can then be addressed as ‘’x’
(i.e., a single quote followed by ‘x’) in subsequent commands. The mark is not
cleared until the line is deleted or otherwise modified. The current address is
unchanged.

List command. Prints the addressed lines unambiguously. The end of each line
is marked with a ‘$’, and every ‘$’ character within the text is printed with a

Chapter 6: Commands 14

., Om(.)

(.,.)n
C.,.)p

P

q

Q

($)r file

preceding backslash. Special characters are printed as escape sequences. The
current address is set to the address of the last line printed.

Moves lines in the buffer. The addressed lines are moved to after the right-
hand destination address. The destination address ‘0’ (zero) is valid for this
command; it moves the addressed lines to the beginning of the buffer. It is
an error if the destination address falls within the range of moved lines. The
current address is set to the new address of the last line moved.

Number command. Prints the addressed lines, preceding each line by its line
number and a tab. The current address is set to the address of the last line
printed.

Prints the addressed lines. The current address is set to the address of the last
line printed.

Toggles the command prompt on and off. Unless a prompt is specified with
command-line option ‘-p’, the command prompt is by default turned off.

Quits ed. A warning is printed if any changes have been made in the buffer
since the last ‘w’ command that wrote the entire buffer to a file.

Quits ed unconditionally. This is similar to the q command, except that un-
written changes are discarded without warning.

Reads file and appends it after the addressed line. If file is not specified, then
the default filename is used. If there is no default filename prior to the com-
mand, then the default filename is set to file. Otherwise, the default filename
is unchanged. The address ‘0’ (zero) is valid for this command; it reads the file
at the beginning of the buffer. The current address is set to the address of the
last line read or, if there were none, to the addressed line.

If file is prefixed with a bang (!), then it is interpreted as a shell command
whose output is to be read, (see [shell escape command], page 16, ‘!’ below).
In this case the default filename is unchanged.

(.,.)s/re/replacement/

Substitute command. Replaces text in the addressed lines matching a regular
expression re with replacement. By default, only the first match in each line is
replaced. The ‘s’ command accepts any combination of the suffixes ‘g’, ‘count’,
‘1, ‘n’, and ‘p’. If the ‘g’ (global) suffix is given, then every match is replaced.
The ‘count’ suffix, where count is a positive number, causes only the countth
match to be replaced. ‘g’ and ‘count’ can’t be specified in the same command.
‘1’, ‘n’, and ‘p’ are the usual print suffixes. It is an error if no substitutions
are performed on any of the addressed lines. The current address is set to
the address of the last line on which a substitution occurred. If a line is split,
a substitution is considered to have occurred on each of the new lines. If no

substitution is performed, the current address is unchanged.

re and replacement may be delimited by any character other than space,
newline and the characters used by the form of the ‘s’ command shown below.
If the last delimiter is omitted, then the last line affected is printed as if the

Chapter 6: Commands 15

(.,0s
C.,tC)
u

print suffix ‘p’ were specified. The last delimiter can’t be omitted if the ‘s’ com-
mand is part of a ‘g’ or ‘v’ command-list and is not the last command in the
list, because the meaning of the following escaped newline becomes ambiguous.

An unescaped ‘&’ in replacement is replaced by the currently matched text.
The character sequence ‘\m’ where m is a number in the range [1,9], is replaced
by the mth backreference expression of the matched text. If the corresponding
backreference expression does not match, then the character sequence ‘\m’ is
replaced by the empty string. If replacement consists of a single ‘%’, then
replacement from the last substitution is used.

A line can be split by including a newline escaped with a backslash (‘\’) in
replacement, except if the ‘s’ command is part of a ‘g’ or ‘v’ command-list,
because in this case the meaning of the escaped newline becomes ambiguous.
Each backslash in replacement removes the special meaning (if any) of the
following character.

Repeats the last substitution. This form of the ‘s’ command accepts the ‘g’ and
‘count’ suffixes described above, and any combination of the suffixes ‘p’ and
‘r’. The ‘g’ suffix toggles the global suffix of the last substitution and resets
count to 1. The ‘p’ suffix toggles the print suffixes of the last substitution. The
‘r’ suffix causes the regular expression of the last search to be used instead of

that of the last substitution (if the search happened after the substitution).

Copies (i.e., transfers) the addressed lines to after the right-hand destination
address. If the destination address is ‘0’ (zero), the lines are copied at the
beginning of the buffer. The current address is set to the address of the last
line copied.

Undoes the effect of the last command that modified anything in the buffer and
restores the current address to what it was before the command. The global
commands ‘g’, ‘G’, ‘v’, and ‘V’ are treated as a single command by undo. ‘u’ is
its own inverse.

(1,$)v/re/command-1ist

(1,$)V/re/

This is similar to the ‘g’ command except that it applies command-list to each
of the addressed lines not matching the regular expression re.

This is similar to the ‘G’ command except that it interactively edits the ad-
dressed lines not matching the regular expression re.

(1,$)w file

Writes the addressed lines to file. Any previous contents of file is lost without
warning. If there is no default filename, then the default filename is set to file,
otherwise it is unchanged. If no filename is specified, then the default filename
is used. The current address is unchanged.

If file is prefixed with a bang (!), then it is interpreted as a shell command
and the addressed lines are written to its standard input, (see [shell escape
command], page 16, ‘!’ below). In this case the default filename is unchanged.
Writing the buffer to a shell command does not prevent the warning to the

16

user if an attempt is made to overwrite or discard the buffer via the ‘e’ or ‘q’
commands.

(1,$)wq file

Writes the addressed lines to file, and then executes a ‘q” command.

(1,$)W file

(.+1)zn

| command

($=

Appends the addressed lines to the end of file. This is similar to the ‘w’ com-
mand, except that the previous contents of file is not clobbered. The current
address is unchanged.

Copies (puts) the contents of the cut buffer to after the addressed line. The
current address is set to the address of the last line copied.

Copies (yanks) the addressed lines to the cut buffer. The cut buffer is over-
written by subsequent ‘c’, ‘d’, ‘j’, ‘s’, or ‘y’ commands. The current address is
unchanged.

Scrolls n lines at a time starting at addressed line, and sets window size to n. If
n is not specified, then the current window size is used. Window size defaults
to screen size minus two lines, or to 22 if screen size can’t be determined. The
current address is set to the address of the last line printed.

Shell escape command. Executes command via sh (1). If the first character
of command is ‘!’, then it is replaced by the text of the previous ‘! command’.
Thus, ‘!'!’ repeats the previous ‘! command’. ed does not process command for
backslash (‘\’) escapes. However, an unescaped ‘%’ is replaced by the default
filename. When the shell returns from execution, a ‘!’ is printed to the standard
output. The current address is unchanged.

Begins a comment; the rest of the line, up to a newline, is ignored. If a line
address followed by a semicolon is given, then the current address is set to that
address. Otherwise, the current address is unchanged.

Prints the line number of the addressed line. The current address is unchanged.

(.+1)newline

Null command. An address alone prints the addressed line. A newline alone
is equivalent to ‘+1p’. The current address is set to the address of the printed
line.

17

7 Limitations

If the terminal hangs up, ed attempts to write the buffer to the file ed.hup or, if this fails,
to $HOME/ed . hup.

ed processes file arguments for backslash escapes, i.e., in a filename, any character pre-
ceded by a backslash (‘\’) is interpreted literally.

If a text (non-binary) file is not terminated by a newline character, then ed appends
one on reading/writing it. In the case of a binary file, ed does not append a newline on
reading /writing.

Per line overhead: 2 pointers, 1 long int, and 1 int.

18

8 Diagnostics

When an error occurs, if ed’s input is from a regular file or here document, then it exits,
otherwise it prints a ‘?’ and returns to command mode. An explanation of the last error
can be printed with the ‘b’ (help) command.

If the ‘v’ (undo) command occurs in a global command list, then the command list is
executed only once.

Attempting to quit ed or edit another file before writing a modified buffer results in an
error. If the command is entered a second time, it succeeds, but any changes to the buffer
are lost.

19

9 Reporting bugs

There are probably bugs in ed. There are certainly errors and omissions in this manual. If
you report them, they will get fixed. If you don’t, no one will ever know about them and
they will remain unfixed for all eternity, if not longer.

If you find a bug in ed, please send electronic mail to bug-ed@gnu.org. Include the
version number, which you can find by running ed --version.

mailto:bug-ed@gnu.org

20

10 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Chapter 10: GNU Free Documentation License 21

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain AScIil without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Chapter 10: GNU Free Documentation License 22

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Chapter 10: GNU Free Documentation License 23

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Chapter 10: GNU Free Documentation License 24

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Chapter 10: GNU Free Documentation License 25

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Chapter 10: GNU Free Documentation License 26

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Chapter 10: GNU Free Documentation License 27

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Overview
	Introduction to line editing
	Invoking ed
	Line addressing
	Regular expressions
	Commands
	Limitations
	Diagnostics
	Reporting bugs
	GNU Free Documentation License

