\extrarowheight

A new implementation of ITEX’s tabular and array
environment*

Frank Mittelbach David Carlislef
Printed November 21, 2023

This file is maintained by the KTEX Project team.
Bug reports can be opened (category tools) at
https://latex-project.org/bugs.html.

Abstract

This article describes an extended implementation of the KTEX array—
and tabular—environments. The special merits of this implementation are
further options to format columns and the fact that fragile BKTEX—-commands
don’t have to be \protect’ed any more within those environments.

The major part of the code for this package dates back to 1988—so does
some of its documentation.

1 Introduction

This new implementation of the array— and tabular—environments is part of a larger
project in which we are trying to improve the M TEX-code in some aspects and to
make TEX even easier to handle.

The reader should be familiar with the general structure of the environments
mentioned above. Further information can be found in [3] and [1]. The additional
options which can be used in the preamble as well as those which now have a
slightly different meaning are described in table 1.

Additionally we introduce a new parameter called \extrarowheight. If it
takes a positive length, the value of the parameter is added to the normal height
of every row of the table, while the depth will remain the same. This is important
for tables with horizontal lines because those lines normally touch the capital
letters. For example, we used \setlength{\extrarowheight}{1pt} in table 1.

We will discuss a few examples using the new preamble options before dealing
with the implementation.

e If you want to use a special font (for example \bfseries) in a flushed left
column, this can be done with >{\bfseries}1. You do not have to begin
every entry of the column with \bfseries any more.

*This file has version number v2.5g, last revised 2023/10/16.
TDavid kindly agreed on the inclusion of the \newcolumntype implementation, formerly in
newarray.sty into this package.

https://latex-project.org/bugs.html

Unchanged options

1 Left adjusted column.
c Centered adjusted column.
r Right adjusted column.
p{width} Equivalent to \parbox [t]{width}.
0{decl.} Suppresses inter-column space and inserts decl. instead.

New options

Defines a column of width width. Every entry will be cen-
m{width} tered in proportion to the rest of the line. It is somewhat
like \parbox{width}.

b{width} Coincides with \parbox [b]{width}.

Can be used before an 1, r, ¢, p, m or a b option. It inserts

> . . .
{decl .} decl. directly in front of the entry of the column.

Can be used after an 1, r, ¢, p{..}, m{..} or a b{..}

<idecl. . . .
{decl.} option. It inserts decl. right after the entry of the column.

Inserts a vertical line. The distance between two columns
| will be enlarged by the width of the line in contrast to the
original definition of IMTEX.

Can be used anywhere and corresponds with the | option.
The difference is that decl. is inserted instead of a vertical
line, so this option doesn’t suppress the normally inserted
space between columns in contrast to @{...}.

1{decl.}

Sets the cell content in a box of the specified width aligned
according to the align parameter which could be either 1, c
w{align}{width} | or r. Works essentially like \makebox [width] [align] {cell}
so silently overprints if the cell content is wider than the
specified width. If that is not desired use W instead.

Like w but spits out an overfull box warning (and an over-
fullrule marker in draft mode) when the cell content is too
W{align}{width} | wide to fit. This also means that the alignment is different
if there is too much material, because it then always pro-
trudes to the right!

Table 1: The preamble options.

e In columns which have been generated with p, m or b, the default value of
\parindent is Opt. This can be changed with
>{\setlength{\parindent}{1lcm}}p.

e The >- and <—options were originally developed for the following application:
>{$}c<{$} generates a column in math mode in a tabular-environment. If
you use this type of a preamble in an array—environment, you get a column
in LR mode because the additional $’s cancel the existing $’s.

e One can also think of more complex applications. A problem which has been
mentioned several times in TEXhax can be solved with >{\centerdots}c
<{\endcenterdots}. To center decimals at their decimal points you (only?)

have to define the following macros:

{\catcode‘\.\active\gdef.{\egroup\setbox2\hbox\bgroup}}
\def\centerdots{\catcode‘\.\active\setbox0\hbox\bgroup}
\def\endcenterdots{\egroup\ifvoid2 \setbox2\hbox{0}\fi
\ifdim \wdO>\wd2 \setbox2\hbox to\wdO{\unhbox2\hfilll}\else
\setbox0O\hbox to\wd2{\hfill\unhboxO0}\fi
\catcode‘\.12 \box0.\box2}

Warning: The code is bad, it doesn’t work with more than one dot in a cell
and doesn’t work when the tabular is used in the argument of some other
command. A much better version is provided in the dcolumn.sty by David
Carlisle.

e Using c!{\hspace{lcm}}c you get space between two columns which is en-
larged by one centimeter, while c@{\hspace{lcm}}c gives you exactly one
centimeter space between two columns.

e A declaration like w{1}{3cm} (or even shorter wl{3cm}) works like an 1 col-
umn except that the width will always be 3cm regardless of the cell content.
Same with w{c} or w{r}. This means that it is easy to set up tables in which
all columns have predefined widths.

1.1 The behavior of the \\ command

In the basic tabular implementation of KTEX the \\ command ending the rows
of the tabular or array has a somewhat inconsistent behavior if its optional
argument is used. The result then depends on the type of rightmost column and
as remarked in Leslie Lamport’s I¥TEX manual [3] may not always produce the
expected extra space.

Without the array package the extra space requested by the optional argument
of \\ is measured from the last baseline of the rightmost column (indicated by
“x” in the following example). As a result, swapping the column will give different
results:

\begin{tabular}[t]{1p{1icm}}

1 & 1\newline x \\[20pt] 2& 2 \end{tabular}
\begin{tabular} [t]{p{1cm}1}
1\newline 1 & x \\[20pt] 2& 2 \end{tabular}

\newcolumntype

If you run this without the array package you will get the following result:

1 1 1 X
X 1
2 2
2 2

In contrast, when the array package is loaded, the requested space in the optional
argument is always measured from the baseline of the whole row and not from
the last baseline of the rightmost column, thus swapping columns doesn’t change
the spacing and we same table height with an effective 8pt of extra space (as the
second line already takes up 12pt of the requested 20pt):

1 1 1 x
X 1
2 2 2 2

This correction of behavior only makes a difference if the rightmost column
is a p-column. Thus if you add the array package to an existing document, you
should verify the spacing in all tables that have this kind of structure.

1.2 Defining new column specifiers
Whilst it is handy to be able to type
>{(some declarations)}{c}<{(some more declarations)}

if you have a one-off column in a table, it is rather inconvenient if you often use
columns of this form. The new version allows you to define a new column specifier,
say x, which will expand to the primitives column specifiers.! Thus we may define

\newcolumntype{x}{>{(some declarations)}{c}<{({some more declarations)}}

One can then use the x column specifier in the preamble arguments of all array
or tabular environments in which you want columns of this form.

It is common to need math-mode and LR-mode columns in the same alignment.
If we define:

\newcolumntype{C}{>{$}c<{$}}
\newcolumntype{L}{>{$}1<{$}}
\newcolumntype{R}H>{$}r<{$}}

Then we can use C to get centred LR-mode in an array, or centred math-mode
in a tabular.

The example given above for ‘centred decimal points’ could be assigned to a d
specifier with the following command.

\newcolumntype{d}{>{\centerdots}c<{\endcenterdots}}

The above solution always centres the dot in the column. This does not look
too good if the column consists of large numbers, but to only a few decimal places.
An alternative definition of a d column is

1This command was named \newcolumn in the newarray.sty. At the moment \newcolumn is
still supported (but gives a warning). In later releases it will vanish.

\newcolumntype{d}[1]{>{\rightdots{#1}}r<{\endrightdots}}

where the appropriate macros in this case are:?
\def\coldot{.} Or if you prefer, \def\coldot{\cdot}
{\catcode‘\.=\active
\gdef . {$\egroup\setbox2=\hbox to \dimenO \bgroup$\coldot}}
\def\rightdots#1{%
\setbox0=\hbox{1}\dimenO=#1\wdO
\setbox0=\hbox{\coldot}\advance\dimenO \wdO
\setbox2=\hbox to \dimenO {}%
\setbox0=\hbox\bgroup\mathcode ‘\.="8000 $}
\def\endrightdots{$\hfil\egroup\box0\box2}

Note that \newcolumntype takes the same optional argument as \newcommand
which declares the number of arguments of the column specifier being defined.
Now we can specify d{2} in our preamble for a column of figures to at most two
decimal places.

A rather different use of the \newcolumntype system takes advantage of the
fact that the replacement text in the \newcolumntype command may refer to
more than one column. Suppose that a document contains a lot of tabular
environments that require the same preamble, but you wish to experiment with
different preambles. Lamport’s original definition allowed you to do the following
(although it was probably a mis-use of the system).

\newcommand{\X}{clr}
\begin{tabular}{\X} ...

array.sty takes great care not to expand the preamble, and so the above does not
work with the new scheme. With the new version this functionality is returned:

\newcolumntype{X}{clr}
\begin{tabular}{X} ...

The replacement text in a \newcolumntype command may refer to any of the
primitives of array.sty see table 1 on page 2, or to any new letters defined in
other \newcolumntype commands.

\showcols A list of all the currently active \newcolumntype definitions is sent to the
terminal and log file if the \showcols command is given.

1.3 Special variations of \hline

The family of tabular environments allows vertical positioning with respect to the
baseline of the text in which the environment appears. By default the environment
appears centered, but this can be changed to align with the first or last line in
the environment by supplying a t or b value to the optional position argument.
However, this does not work when the first or last element in the environment is a
\hline command—in that case the environment is aligned at the horizontal rule.

2The package dcolumn.sty contains more robust macros based on these ideas.

Here is an example:

Tables with no versus Tables
hline \begin{tabular}[t]{1}
commands with no\\ hline \\ commands \\ used
used \end{tabular} versus tables

tables used. \begin{tabular}[t]{I1]}
with some \hline
hline with some \\ hline \\ commands \\
commands \hline

\end{tabular} used.

\firsthline Using \firsthline and \lasthline will cure the problem, and the tables will
\lasthline align properly as long as their first or last line does not contain extremely large

objects.

Tables with no versus Tables
line \begin{tabular}[t]1{1}
commands with no\\ line \\ commands \\ used
used \end{tabular} versus tables

; \begin{tabular}[t]1{|1|}

tables Wlth some | used. \firsthline
line with some \\ line \\ commands \\
commands \lasthline

\end{tabular} used.

\extratabsurround The implementation of these two commands contains an extra dimension, which
is called \extratabsurround, to add some additional space at the top and the
bottom of such an environment. This is useful if such tables are nested.

2 Final Comments

2.1 Handling of rules

There are two possible approaches to the handling of horizontal and vertical rules
in tables:

1. rules can be placed into the available space without enlarging the table, or
2. rules can be placed between columns or rows thereby enlarging the table.

For vertical rules array.sty implements the second possibility while the default
implementation in the I¥TEX kernel implements the first concept. Both concepts
have their merits but one has to be aware of the individual implications.

e With standard IMTEX adding vertical rules to a table will not affect the width
of the table (unless double rules are used), e.g., changing a preamble from
111 to 11111 does not affect the document other than adding rules to the
table. In contrast, with array.sty a table that just fit the \textwidth
might now produce an overfull box.

e With standard I¥TEX modifying the width of rules could result in ugly look-
ing tables because without adjusting the \tabcolsep, etc. the space between

rule and column could get too small (or too large). In fact even overprinting
of text is possible. In contrast, with array.sty modifying any such length
usually works well as the actual visual white space (from \tabcolsep, etc.)
does not depend on the width of the rules.

e With standard I¥TEX boxed tabulars actually have strange corners because
the horizontal rules end in the middle of the vertical ones. This looks very
unpleasant when a large \arrayrulewidth is chosen. In that case a simple
table like

\setlength{\arrayrulewidth}{5pt}
\begin{tabular}{|1]}

\hline A \\ \hline
\end{tabular}

will produce something like

instead of

Horizontal rules produced with \hline add to the table height in both imple-
mentations but they differ in handling double \hlines. In contrast a \cline does
not change the table height.?

2.2 Comparisons with older versions of array.sty

There are some differences in the way version 2.1 treats incorrect input, even if
the source file does not appear to use any of the extra features of the new version.

e A preamble of the form {wx*{0}{abc}yz} was treated by versions prior to
2.1 as {wx}. Version 2.1 treats it as {wxyz}

e An incorrect positional argument such as [Q] was treated as [c] by
array.sty, but is now treated as [t].

e A preamble such as {cc*{2}} with an error in a *-form will generate different
errors in the new version. In both cases the error message is not particularly
helpful to the casual user.

e Repeated < or > constructions generated an error in earlier versions, but are
now allowed in this package. >{(decs?)}>{(decs2)} is treated the same as
>{(decs2)(decs1)}.

e The \extracolsep command does not work with the old versions of
array.sty, see the comments in array.bug. With version 2.1 \extracolsep
may again be used in @-expressions as in standard KTEX, and also in !-
expressions (but see the note below).

Prior to version 2.4f the space added by the optional argument to \\ was added
inside an m-cell if the last column was of type m. As a result that cell was vertically
centered with that space inside, resulting in a strange offset. Since 2.4f, this space
is now added after centering the cell.

3All a bit inconsistent, but nothing that can be changed after being 30+ years in existence.

A similar problem happened when \extrarowheight was used. For that reason

m-cells now manually position the cell content which allows to ignore this extra
space request during the vertical aligment.

2.3 Bugs and Features

3

e Error messages generated when parsing the column specification refer to the

preamble argument after it has been re-written by the \newcolumntype
system, not to the preamble entered by the user. This seems inevitable with
any system based on pre-processing and so is classed as a feature.

The treatment of multiple < or > declarations may seem strange at
first. Earlier implementations treated >{(decs!)}>{(decs2)} the same as
>{(decs1)(decs2)}. However this did not give the user the opportunity of
overriding the settings of a \newcolumntype defined using these declarations.
For example, suppose in an array environment we use a C column defined
as above. The C specifies a centred text column, however >{\bfseries}C,
which re-writes to >{\bfseries}>{$}c<{$} would not specify a bold col-
umn as might be expected, as the preamble would essentially expand to
\hfil\bfseries#$ $\hfil and so the column entry would not be in the
scope of the \bfseries! The present version switches the order of repeated
declarations, and so the above example now produces a preamble of the form
\hfil$ $\bfseries#$ $\hfil, and the dollars cancel each other out without
limiting the scope of the \bfseries.

The use of \extracolsep has been subject to the following two restrictions.
There must be at most one \extracolsep command per @, or ! expression
and the command must be directly entered into the @ expression, not as part
of a macro definition. Thus \newcommand{\ef}{\extracolsep{\fill}}
...@{\ef} does not work with this package. However you can use some-
thing like \newcolumntype{e}{@{\extracolsep{\fill}} instead.

As noted by the IXTEX book, for the purpose of \multicolumn each column
with the exception of the first one consists of the entry and the following
inter-column material. This means that in a tabular with the preamble
[1111111] input such as \multicolumn{2}{|cl|} in anything other than
the first column is incorrect.

In the standard array/tabular implementation this error is not so noticeable
as that version contains negative spacing so that each | takes up no horizon-
tal space. But since in this package the vertical lines take up their natural
width one sees two lines if two are specified.

The documentation driver file

The first bit of code contains the documentation driver file for TEX, i.e., the file
that will produce the documentation you are currently reading. It will be extracted
from this file by the docstrip program.

1 (xdriver)
2 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

3 \documentclass{ltxdoc}

4

5 % undo the default is not used:

6

7 \IfFormatAtLeastTF {2020/10/01}

8 {\AtBeginDocument [1txdoc]{\DeleteShortVerb{\|}} }
9 {\AtBeginDocument{\DeleteShortVerb{\|}} }

10

11 \usepackage{array}

12

13 % Allow large table at bottom

14 \renewcommand{\bottomfraction}{0.7}

15

16 \EnableCrossrefs

17 %\DisableCrossrefs % Say \DisableCrossrefs if index is ready
18

19 \RecordChanges % Gather update information

20

21 \CodelineIndex % Index code by line number

22

23 %\OnlyDescription % comment out for implementation details
24 %\0ldMakeindex % use if your MakeIndex is pre-v2.9

25

26 \begin{document}

27 \DocInput{array.dtx}
28 \end{document}

29 (/driver)

4 The construction of the preamble

It is obvious that those environments will consist mainly of an \halign, because
TEX typesets tables using this primitive. That is why we will now take a look at
the algorithm which determines a preamble for a \halign starting with a given
user preamble using the options mentioned above.
The current version is defined at the top of the file looking something like this

30 (xpackage)

31 %\NeedsTeXFormat{LaTeX2e}[1994/05/13]

32 %\ProvidesPackage{array}[\filedate\space version\fileversion]

The most interesting macros of this implementation are without doubt those
which are responsible for the construction of the preamble for the \halign.
The underlying algorithm was developed by LAMPORT (resp. KNUTH, see texhax
V87#77), and it has been extended and improved.

The user preamble will be read token by token. A token is a single character like
c or a block enclosed in {...}. For example the preamble of \begin{tabular}
{1cl| | c@{\hspace{1cm}}} consists of the token 1, c, |, |, @ and \hspace{1lcm}.

The currently used token and the one, used before, are needed to decide on how
the construction of the preamble has to be continued. In the example mentioned
above the 1 causes the preamble to begin with \hskip\tabcolsep. Furthermore
\hfil would be appended to define a flush left column. The next token is a c.
Because it was preceded by an 1 it generates a new column. This is done with
\hskip \tabcolsep & \hskip \tabcolsep. The column which is to be centered

\@chclass
\@chnum
\@lastchclass

\Q@addtopreamble

\@testpach

will be appended with \hfil # \hfil. The token | would then add a space of
\hskip \tabcolsep and a vertical line because the last tokens was a c. The
following token | would only add a space \hskip \doublerulesep because it was
preceded by the token |. We will not discuss our example further but rather take
a look at the general case of constructing preambles.

The example shows that the desired preamble for the \halign can be con-
structed as soon as the action of all combinations of the preamble tokens are
specified. There are 18 such tokens so we have 19 - 18 = 342 combinations if
we count the beginning of the preamble as a special token. Fortunately, there
are many combinations which generate the same spaces, so we can define token
classes. We will identify a token within a class with a number, so we can insert
the formatting (for example of a column). Table 2 lists all token classes and their
corresponding numbers.

token \@chclass \@chnum token \@chclass \@chnum
c 0 0 Start 4 —
1 0 1 Q@-arg 5 —
r 0 2 ! 6 —
m-arg 0 3 @ 7 —
p-arg 0 4 < 8 —
b-arg 0 5 > 9 —
| 1 0 m 10 3
l-arg 1 1 P 10 4
<-arg 2 — b 10 5
>-arg 3 —

Table 2: Classes of preamble tokens

The class and the number of the current token are saved in the count registers
\@chclass and \@chnum, while the class of the previous token is stored in the count
register \@lastchclass. All of the mentioned registers are already allocated in
the IMTEX format, which is the reason why the following three lines of code are
commented out. Later throughout the text I will not mention it again explicitly
whenever I use a % sign. These parts are already defined in the IXTEX format.

33 % \newcount \@chclass

34 % \newcount \@chnum

35 % \newcount \@lastchclass

We will save the already constructed preamble for the \halign in the global macro
\@preamble. This will then be enlarged with the command \@addtopreamble.

36 \def\@addtopreamble#1{\xdef\@preamble{\@preamble #1}}

4.1 The character class of a token

With the help of \@lastchclass we can now define a macro which determines the
class and the number of a given preamble token and assigns them to the registers
\@chclass and \@chnum.

37 \def\@testpach{\@chclass

10

\@xexpast
\the@toks
\the@toksz

First we deal with the cases in which the token (#1) is the argument of !, @, < or
>. We can see this from the value of \@lastchclass:

38 \ifnum \@lastchclass=6 \@ne \@chnum \@ne \else

39 \ifnum \@lastchclass=7 5 \else

40 \ifnum \@lastchclass=8 \twQ@ \else

41 \ifnum \@lastchclass=9 \thre@a@

Otherwise we will assume that the token belongs to the class 0 and assign the
corresponding number to \@chnum if our assumption is correct.

42 \else \z@

If the last token was a p, m or a b, \@chnum already has the right value. This is
the reason for the somewhat curious choice of the token numbers in class 10.

43 \ifnum \@lastchclass = 10 \else

Otherwise we will check if \@nextchar is either a ¢, 1 or an r. Some applications
change the catcodes of certain characters like “@” in amstex.sty. As a result the
tests below would fail since they assume non-active character tokens. Therefore
we evaluate \@nextchar once thereby turning the first token of its replacement
text into a char. At this point here this should have been the only char present in
\@nextchar which put into via a \def.

44 \edef\@nextchar{\expandafter\string\@nextchar}y,

45 \@chnum

46 \if \@nextchar c\z@ \else

47 \if \@nextchar 1\@ne \else

48 \if \@nextchar r\tw@ \else

If it is a different token, we know that the class was not 0. We assign the value 0
to \@chnum because this value is needed for the |-token. Now we must check the
remaining classes. Note that the value of \@chnum is insignificant here for most
classes.

49 \z@ \@chclass
50 \if\@nextchar |\@ne \else

51 \if \@nextchar !'6 \else
52 \if \@nextchar @7 \else
53 \if \@nextchar <8 \else
54 \if \@nextchar >9 \else

The remaining permitted tokens are p, m and b (class 10).

55 10

56 \@chnum

57 \if \@nextchar m\thr@@\else

58 \if \@nextchar p4 \else

59 \if \@nextchar b5 \else

Now the only remaining possibility is a forbidden token, so we choose class 0 and
number 0 and give an error message. Then we finish the macro by closing all
\if’s.

60 \z@ \@chclass \z@ \@preamerr \z@ \fi \fi \fi \fi

61 \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi}

4.2 Multiple columns (¥—form)

Now we discuss the macro that deletes all forms of type *{N}{String} from a
user preamble and replaces them with N copies of String. Nested x—expressions

11

\@xexnoop

are dealt with correctly, that means *—expressions are not substituted if they are
in explicit braces, as in @{*}.

This macro is called via \@xexpast(preamble)*0x\@@. The x—expression *0x
is being used to terminate the recursion, as we shall see later, and \@@ serves as
an argument delimiter. \@xexpast has four arguments. The first one is the part
of the user preamble before the first *—expression while the second and third ones
are the arguments of the first *—expression (that is N and String in the notation
mentioned above). The fourth argument is the rest of the preamble.

62 \def\Q@xexpast#1*#2#3#4\00{/,

The number of copies of String (#2) that are to be produced will be saved in a
count register.

63 \@tempcnta #2

We save the part of the preamble which does not contain a *—form (#1) in a
PLAIN TEX token register. We also save String (#3) using a ITEX token register.
64 \toks@={#1}\@temptokena={#3}/,

Now we have to use a little trick to produce N copies of String. We could try
\def\@tempa{#1} and then N times \edef\@tempa{\@tempa#3}. This would
have the undesired effect that all macros within #1 and #3 would be expanded,
although, for example, constructions like @{. .} are not supposed to be changed.
That is why we \let two control sequences to be equivalent to \relax.

65 \let\the@toksz\relax \let\the@toks\relax

Then we ensure that \@tempa contains {\the@toksz\the®@toks...\the@toks}
(the macro \the@toks exactly N times) as substitution text.

66 \def\@tempa{\the@toksz}/,

67 \ifnum\@tempcnta >0 \@whilenum\@tempcnta >0\do

68 {\edef\@tempa{\@tempa\the@toks}\advance \Q@tempcnta \m@nely,

If N was greater than zero we prepare for another call of \@xexpast. Otherwise
we assume we have reached the end of the user preamble, because we had ap-
pended *0x\@@ when we first called \@xexpast. In other words: if the user inserts
*{0}{. .} in his preamble, I¥TEX ignores the rest of it.

69 \let \@tempb \@xexpast \else

70 \let \@tempb \@xexnoop \fi

Now we will make sure that the part of the user preamble, which was already dealt
with, will be saved again in \@tempa.

71 \def\the@toksz{\the\toks@}\def\the@toks{\the\@temptokenal},

72 \edef\@tempa{\@tempaly,

We have now evaluated the first *—expression, and the user preamble up to this
point is saved in \@tempa. We will put the contents of \@tempa and the rest of
the user preamble together and work on the result with \@tempb. This macro
either corresponds to \@xexpast, so that the next x—expression is handled, or to
the macro \@xexnoop, which only ends the recursion by deleting its argument.

73 \expandafter \@tempb \@tempa #4\Q@}

So the first big problem is solved. Now it is easy to specify \@xexnoop. Its
argument is delimited by \@@ and it simply expands to nothing.

74 % \def\@xexnoop#1\0e{}

12

\count@

\prepnext@tok

\save@decl

5 The insertion of declarations (>, <, !, @)

The preamble will be enlarged with the help of \xdef, but the arguments of >,
<, ! and @ are not supposed to be expanded during the construction (we want
an implementation that doesn’t need a \protect). So we have to find a way to
inhibit the expansion of those arguments.

We will solve this problem with token registers. We need one register for every
I and @, while we need two for every c, 1, r, m, p or b. This limits the number
of columns of a table because there are only 256 token registers. But then, who
needs tables with more than 100 columns?

One could also find a solution which only needs two or three token registers by
proceeding similarly as in the macro \@xexpast (see page 11). The advantage of
our approach is the fact that we avoid some of the problems that arise with the
other method®.

So how do we proceed? Let us assume that we had !{foo} in the
user preamble and say we saved foo in token register 5. Then we call
\@addtopreamble{\the@toks5} where \the@toks is defined in a way that it does
not expand (for example it could be equivalent to \relax). Every following call
of \@addtopreamble leaves \the@toks5 unchanged in \@preamble. If the con-
struction of the preamble is completed we change the definition of \the@toks to
\the\toks and expand \@preamble for the last time. During this process all
parts of the form \the@toks(Number) will be substituted by the contents of the
respective token registers.

As we can see from this informal discussion the construction of the preamble
has to take place within a group, so that the token registers we use will be freed
later on. For that reason we keep all assignments to \@preamble global; therefore
the replacement text of this macro will remain the same after we leave the group.

We further need a count register to remember which token register is to be used
next. This will be initialized with —1 if we want to begin with the token register
0. We use the PLAIN TEX scratch register \count@ because everything takes place
locally. All we have to do is insert \the@toks \the \count@ into the pream-
ble. \the@toks will remain unchanged and \the\count@ expands into the saved
number.

The macro \prepnext@tok is in charge of preparing the next token register. For
that purpose we increase \count@ by 1:

75 \def \prepnext@tok{\advance \count@ \@ne

Then we locally delete any contents the token register might have.

76 \toks\count@{}}

During the construction of the preamble the current token is always saved in the
macro \@nextchar (see the definition of \@mkpream on page 15). The macro
\save@decl saves it into the next free token register, i.e. in \toks\count@.

77 \def\save@decl{\toks\count@ \expandafter{\@nextcharl}}

The reason for the use of \relax is the following hypothetical situation in the
preamble: ..\the\toks1\the\toks2.. TEX expands \the\toks2 first in or-
der to find out if the digit 1 is followed by other digits. E.g. a 5 saved in the token

4Maybe there are also historical reasons.

13

\insert@column
\@sharp

\@addamp

register 2 would lead TEX to insert the contents of token register 15 instead of 1
later on.

The example above referred to an older version of \save@decl which inserted a
\relex inside the token register. This is now moved to the places where the actual
token registers are inserted (look for \the@toks) because the old version would
still make @ expressions to moving arguments since after expanding the second
register while looking for the end of the number the contents of the token register
is added so that later on the whole register will be expanded. This serious bug
was found after nearly two years international use of this package by Johannes
Braams.

How does the situation look like, if we want to add another column to the
preamble, i.e. if we have found a ¢, 1, r, p, m or b in the user preamble? In this
case we have the problem of the token register from >{..} and <{..} having to
be inserted at this moment because formatting instructions like \hfil have to be
set around them. On the other hand it is not known yet, if any <{. .} instruction
will appear in the user preamble at all.

We solve this problem by adding two token registers at a time. This explains,
why we have freed the token registers in \prepnext@tok.

We now define the macro \insert@column which will do this work for us.
78 \def\insert@column{Y%

Here, we assume that the count register \@tempcnta has saved the value \count@—
1.

79 \the@toks \the \@tempcnta

Next follows the # sign which specifies the place where the text of the column shall
be inserted. To avoid errors during the expansions in \@addtopreamble we hide
this sign in the command \@sharp which is temporarily occupied with \relax
during the build-up of the preamble. To remove unwanted spaces before and after
the column text, we set an \ignorespaces in front and a \unskip afterwards.

80 \ignorespaces \@sharp \unskip

Then the second token register follows whose number should be saved in \count@.
We make sure that there will be no further expansion after reading the number,
by finishing with \relax. The case above is not critical since it is ended by
\ignorespaces.

81 \the@toks \the \count@ \relax}

5.1 The separation of columns

In the preamble a & has to be inserted between any two columns; before the first
column there should not be a &. As the user preamble may start with a | we have
to remember somehow if we have already inserted a # (i.e. a column). This is done
with the boolean variable \if@firstamp that we test in \@addamp, the macro that
inserts the &.

82 % \newif \@iffirstamp

83 % \def\Q@addamp{\if@firstamp \@firstampfalse

84 % \else \@addtopreamble &\fi}

14

\@acol
\@acolampacol
\col@sep

We will now define some abbreviations for the extensions, appearing most often
in the preamble build-up. Here \col@sep is a dimen register which is set equiv-
alent to \arraycolsep in an array—environment, otherwise it is set equivalent to
\tabcolsep.

85 \newdimen\col@sep

86 \def\Qacol{\@addtopreamble{\hskip\col@sep}}

87 % \def\@acolampacol{\@acol\@addamp\@acol}

5.2 The macro \@mkpream

\@mkpream The code below has been replaced long time ago by an extended version further

\the@toks

down but the code and its documentation was left here for reference. It is now
commented out to avoid confusion.

Now we can define the macro which builds up the preamble for the \halign. First
we initialize \@preamble, \@lastchclass and the boolean variable \if@f irstamp.

88 %\def\@mkpream#1{\gdef\@preamble{}\@lastchclass 4 \@firstamptrue

During the build-up of the preamble we cannot directly use the # sign; this would
lead to an error message in the next \@addtopreamble call. Instead, we use the
command \@sharp at places where later a # will be. This command is at first
given the meaning \relax; therefore it will not be expanded when the preamble
is extended. In the macro \@array, shortly before the \halign is carried out,
\@sharp is given its final meaning.

In a similar way, we deal with the commands \@startpbox and \@endpbox,
although the reason is different here: these macros expand in many tokens which
would delay the build-up of the preamble.

89 % \let\@sharp\relax\let\@startpbox\relax\let\@endpbox\relax

Two more are needed to deal with the code that handles struts for extra space
after a row from \\[<space>] (\do@row@strut) and code that manages m-cells
depending on their heights (\ar@align@mcell).

90 % \let\do@row@strut\relax

91 % \let\ar@align@mcell\relax

Now we remove possible #-forms in the user preamble with the command
\@xexpast. As we already know, this command saves its result in the macro
\@tempa.

92 % \@xexpast #1*0x\Q@

Afterwards we initialize all registers and macros, that we need for the build-up of
the preamble. Since we want to start with the token register 0, \count@ has to
contain the value —1.

93 % \count@\m@ne

94 % \let\the@toks\relax

Then we call up \prepnext@tok in order to prepare the token register 0 for use.
95% \prepnext@tok

To evaluate the user preamble (without stars) saved in \@tempa we use the B TEX—
macro \@tfor. The strange appearing construction with \expandafter is based
on the fact that we have to put the replacement text of \@tempa and not the macro
\@tempa to this KTEX-macro.

96 % \expandafter \@tfor \expandafter \@nextchar
97 % \expandafter :\expandafter =\Q@tempa \do

15

The body of this loop (the group after the \do) is executed for one token at a time,
whereas the current token is saved in \@nextchar. At first we evaluate the current
token with the already defined macro \@testpach, i.e. we assign to \@chclass the
character class and to \@chnum the character number of this token.

98 % {\@testpach

Then we branch out depending on the value of \@chclass into different macros
that extend the preamble respectively.

99 % \ifcase \@chclass \@classz \or \@classi \or \@classii

100 % \or \save@decl \or \or \@classv \or \@classvi
101 % \or \@classvii \or \@classviii \or \@classix
102 % \or \@classx \fi

Two cases deserve our special attention: Since the current token cannot have
the character class 4 (start) we have skipped this possibility. If the character
class is 3, only the content of \@nextchar has to be saved into the current token
register; therefore we call up \save@decl directly and save a macro name. After
the preamble has been extended we assign the value of \@chclass to the counter
\@lastchclass to assure that this information will be available during the next
run of the loop.

103 % \@lastchclass\@chclass}/,

After the loop has been finished space must still be added to the created preamble,
depending on the last token. Depending on the value of \@lastchclass we perform
the necessary operations.

104 % \ifcase\@lastchclass
If the last class equals 0 we add a \hskip \col@sep.
105 % \@acol \or

If it equals 1 we do not add any additional space so that the horizontal lines do
not exceed the vertical ones.

106 % \or

Class 2 is treated like class 0 because a <{. ..} can only directly follow after class
0.

107 % \@acol \or

Most of the other possibilities can only appear if the user preamble was defective.
Class 3 is not allowed since after a >{..} there must always follow a ¢, 1, r, pn
or b. We report an error and ignore the declaration given by {..}.

108 % \@preamerr \thr@@ \or

If \@lastchclass is 4 the user preamble has been empty. To continue, we insert
a # in the preamble.

109 % \@preamerr \tw@ \Q@addtopreamble\@sharp \or

Class 5 is allowed again. In this case (the user preamble ends with @{..}) we need
not do anything.

110 % \or

Any other case means that the arguments to @, !, <, > p, m or b have been
forgotten. So we report an error and ignore the last token.

111 % \else \@preamerr \G@ne \fi

16

\@classx

\@classz

Now that the build-up of the preamble is almost finished we can insert the to-
ken registers and therefore redefine \the@toks. The actual insertion, though, is
performed later.

112 % \def\the@toks{\the\toks}}

6 The macros \@classz to \@classx

The preamble is extended by the macros \@classz to \@classx which are called
by \@mkpream depending on \@lastchclass (i.e. the character class of the last
token).

First we define \@classx because of its important réle. When it is called we find
that the current token is p, m or b. That means that a new column has to start.

113 \def\@classx{%
Depending on the value of \@lastchclass different actions must take place:
114 \ifcase \@lastchclass

If the last character class was 0 we separate the columns by \hskip\col@sep
followed by & and another \hskip\col@sep.

115 \@acolampacol \or

If the last class was class 1 — that means that a vertical line was drawn, —
before this line a \hskip\col@sep was inserted. Therefore there has to be only a
& followed by \hskip\col@sep. But this & may be inserted only if this is not the
first column. This process is controlled by \if@firstamp in the macro \addamp.

116 \@addamp \@acol \or
Class 2 is treated like class 0 because <{. ..} can only follow after class 0.
117 \@acolampacol \or

Class 3 requires no actions because all things necessary have been done by the
preamble token >.
118 \or

Class 4 means that we are at the beginning of the preamble. Therefore we start
the preamble with \hskip\col@sep and then call \@firstampfalse. This makes
sure that a later \@addamp inserts the character & into the preamble.

119 \@acol \@firstampfalse \or

For class 5 tokens only the character & is inserted as a column separator. Therefore
we call \@addamp.

120 \@addamp

Other cases are impossible. For an example \@lastchclass = 6—as it might

appear in a preamble of the form ...!p...—p would have been taken as an
argument of ! by \@testpach.
121 \fi}

If the character class of the last token is 0 we have ¢, 1, r or an argument of m, b
or p. In the first three cases the preamble must be extended the same way as if
we had class 10. The remaining two cases do not require any action because the
space needed was generated by the last token (i.e. m, b or p). Since \@lastchclass

17

has the value 10 at this point nothing happens when \@classx is called. So the
macro \@chlassz may start like this:

122 \def\@classz{\@classx

According to the definition of \insert@column we must store the number of the
token register in which a preceding >{..} might have stored its argument into
\Q@tempcnta.

123 \@tempcnta \count®@

To have \count@ = \@tmpcnta + 1 we prepare the next token register.

124 \prepnext@tok

Now the preamble must be extended with the column whose format can be deter-
mined by \@chnum.

125 \@addtopreamble{\ifcase \@chnum

If \@chnum has the value 0 a centered column has to be generated. So we begin
with stretchable space.

126 \hfil

We also add a space of 1sp just in case the first thing in the cell is a command
doing an \unskip.

127 \hskiplsp/

The command \d@llarbegin follows expanding into \begingroup (in the tab-
ular—environment) or into $. Doing this (provided an appropriate setting
of \d@llarbegin) we achieve that the contents of the columns of an array—
environment are set in math mode while those of a tabular-environment are set in

LR mode.

128 \d@llarbegin

Now we insert the contents of the two token registers and the symbol for the
column entry (i.e. # or more precise \@sharp) using \insert@column.

129 \insert@column

We end this case with \d@llarend and \hfil where \d@llarend again is either
$ or \endgroup. The strut to enforce a regular row height is placed between the
two.

130 \d@llarend \do@row@strut \hfil \or

The templates for 1 and r (i.e. \@chnum 1 or 2) are generated the same way. Since
one \hfil is missing the text is moved to the relevant side. The \kern\z@ is needed
in case of an empty column entry. Otherwise the \unskip in \insert@column
removes the \hfil. Changed to \hskiplsp so that it interacts better with
\@bsphack.

131 \hskiplsp\d@llarbegin \insert@column \d@llarend \do@row@strut \hfil \or
132 \hfil\hskiplsp\d@llarbegin \insert@column \d@llarend \do@row@strut \or
The templates for p, m and b mainly consist of a box. In case of m it is generated
by \vcenter. This command is allowed only in math mode. Therefore we start
with a $.

133 \setbox\ar@mcellbox\vbox

The part of the templates which is the same in all three cases (p, m and b) is built

by the macros \@startpbox and \@endpbox. \@startpbox has an argument:
the width of the column