
OpenGL R© ES
Safety Critical Profile Specification

Version 1.0 (Annotated)

Editor: Chris Hall
Editor: Claude Knaus

Copyright c© 2002-2005 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written per-
mission of Khronos Group. You may use this specification for implementing the functionality
therein, without altering or removing any trademark, copyright or other notice from the specifi-
cation, but the receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe,
in whole or in part.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual prop-
erty. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Mem-
bers or their respective partners, officers, directors, employees, agents or representatives be liable
for any damages, whether direct, indirect, special or consequential damages for lost revenues,
lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trademark, and
OpenGL ES is a trademark, of Silicon Graphics, Inc.

Contents

1 Overview 1
1.1 Conventions . 1

2 OpenGL Operation 2
2.1 OpenGL Fundamentals . 2
2.2 GL State . 3
2.3 GL Command Syntax . 3
2.4 Basic GL Operation . 3
2.5 GL Errors . 3
2.6 Begin/End Paradigm . 4
2.7 Vertex Specification . 4
2.8 Vertex Arrays . 5
2.9 Rectangles . 6
2.10 Coordinate Transformations . 7
2.11 Clipping . 8
2.12 Current Raster Position . 8
2.13 Colors and Coloring . 9

3 Rasterization 11
3.1 Invariance . 11
3.2 Antialiasing . 11
3.3 Points . 11
3.4 Line Segments . 11
3.5 Polygons . 12
3.6 Pixel Rectangles . 13
3.7 Bitmaps . 15
3.8 Texturing . 15
3.9 Fog . 20

4 Per-Fragment Operations and the Framebuffer 21
4.1 Per-Fragment Operations . 21
4.2 Whole Framebuffer Operations . 23
4.3 Drawing, Reading, and Copying Pixels . 23

i

ii Contents

5 Special Functions 25
5.1 Evaluators . 25
5.2 Selection . 25
5.3 Feedback . 26
5.4 Display Lists . 26
5.5 Flush and Finish . 27
5.6 Hints . 27

6 State and State Requests 28
6.1 Querying GL State . 28
6.2 State Tables . 30

7 Core Additions and Extensions 44
7.1 Single-precision Commands . 45
7.2 Paletted Textures . 45
7.3 Shared Texture Palette . 46

8 Packaging 47
8.1 Header Files . 47
8.2 Libraries . 47

A Acknowledgements 48

B OES Extension Specifications 49
B.1 OES single precision . 49
B.2 EXT paletted texture . 54
B.3 EXT shared texture palette . 65

Chapter 1

Overview

This document outlines the OpenGL ES Safety Critical profile. The profile pipeline is described in the
same order as in the OpenGL specification. The specification lists supported commands and state, and calls
out commands and state that are part of the full (desktop) OpenGL specification but not part of the profile
definition. This specification is not a standalone document describing the detailed behavior of the rendering
pipeline subset and API. Instead, it provides a concise description of the differences between a full OpenGL
renderer and the Safety Critical renderer. This document is defined relative to the OpenGL 1.3 specification.

This document specifies the OpenGL Safety Critical renderer. At this moment, no standard bindings to
window systems or OS platforms exist. It is assumed that in the future, a companion document will define
one or more bindings to window system/OS platform combinations analogous to the GLX, WGL, and AGL
specifications. If required, an additional companion document will describe the utility library functionality
analogous to the GLU specification.

1.1 Conventions

This document describes commands in the identical order as the OpenGL 1.3 specification. Each section
corresponds to a section in the full OpenGL specification and describes the disposition of each command
relative to Safety Critical profile definition. Where necessary, the profile specification provides additional
clarification of the reduced command behavior.

Each section of the specification includes tables summarizing the commands and parameters that are
retained in the Safety Critical profile. Several symbols are used within the tables to indicate various spe-
cial cases. The symbol ♦ indicates that the double-precision form of the command is replaced with its
single-precision variant from the OES single precision extension. The superscript ‡ indicates that the
command is supported subject to additional constraints described in the section body containing the table.

n Additional material summarizing some of the reasoning behind certain decisions is included as an
annotation at the end of each section, set in this typeface. q

1

Chapter 2

OpenGL Operation

The basic GL operation remains largely unchanged. A significant change in the Safety Critical profile
is that the first stage of the pipeline for approximating curve and surface geometry is eliminated. The
remaining pipeline stages include: display list processing, per-vertex operations and primitive assembly,
pixel operations, rasterization, per-fragment operations, and whole framebuffer operations.

The Common/Common-Lite profile introduced several OpenGL extensions that are defined relative to
the full OpenGL 1.3 specification and then appropriately reduced to match the subset of commands in the
profile. Some of these extensions are used by the Safety Critical profile as well. These OpenGL extensions
are divided into two categories: those that are fully integrated into the profile definition – core additions;
and those that remain extensions – profile extensions. Core additions do not use extension suffixes, whereas
profile extensions retain their extension suffixes. Chapter 7 summarizes each extension and how it relates to
the profile definition. Complete extension specifications are included in Appendix B.

n The OpenGL ES profiles are part of a wider family of OpenGL-derived application programming
interfaces. As such, the profiles share a similar processing pipeline, command structure, and the
same OpenGL name space. Where necessary, extensions are created to augment the existing
OpenGL 1.3 functionality. OpenGL ES-specific extensions play a role in OpenGL ES profiles similar
to that played by OpenGL ARB extensions relative to the OpenGL specification. OpenGL ES-specific
extensions are either precursors of functionality destined for inclusion in future core profile revisions,
or formalization of important but non-mainstream functionality.

Extension specifications are written relative to the full OpenGL specification so that they can also be
added as extensions to an OpenGL 1.3 implementation and so that they are easily adapted to profile
functionality enhancements that are drawn from the full OpenGL specification. Extensions that are
part of the core profile do not have extension suffixes, since they are not extensions to the profile,
though they are extensions to OpenGL 1.3. q

2.1 OpenGL Fundamentals

Commands and tokens continue to be prefixed by gl and GL in all profiles. The wide range of support for
differing data types (8-bit, 16-bit, 32-bit and 64-bit; integer and floating-point) is reduced wherever possi-
ble to eliminate non-essential command variants and to reduce the complexity of the processing pipeline.
Double-precision floating-point parameters and data types are eliminated completely, while other command
and data type variations are considered on a command-by-command basis and eliminated when appropriate.

2

OpenGL Operation 3

2.2 GL State

The Safety Critical profile retains a large subset of the client and server state described in the full OpenGL
specification. The separation of client and server state persists. Section 6.2 summarizes the disposition of
all state variables relative to the Safety Critical profile.

2.3 GL Command Syntax

Commands using the suffixes for the types: byte, short, and ushort are not supported. The type double
and all double-precision commands are eliminated. The result is that the Safety Critical profile uses only
the suffixes ’f’, ’i’ and ’ub’.

2.4 Basic GL Operation

The basic command operation remains identical to OpenGL 1.3. The major difference from the OpenGL
1.3 pipeline is that there is no polynomial function evaluation stage.

2.5 GL Errors

The full OpenGL error detection behavior is retained, including ignoring offending commands and setting
the current error state. In all commands, parameter values that are not supported by the profile are treated
like any other unrecognized parameter value and an error results, i.e., INVALID ENUM or INVALID VALUE.
Table 2.1 lists the errors.

OpenGL 1.3 Safety Critical
NO ERROR �
INVALID ENUM �
INVALID VALUE �
INVALID OPERATION �
STACK OVERFLOW �
STACK UNDERFLOW �
OUT OF MEMORY �
TABLE TOO LARGE –

Table 2.1: Error Disposition

The command GetError is retained to return the current error state. As in OpenGL 1.3, it may be
necessary to call GetError multiple times to retrieve error state from all parts of the pipeline.

OpenGL 1.3 Safety Critical
GetError(void) �

4 OpenGL Operation

n Well defined error behavior allows portable applications to be written. Retrievable error state allows
application developers to debug commands with invalid parameters during development. This is an
important feature during initial profile deployment. Implementation errors (e.g. the hardware does not
respond) are outside the scope of OpenGL ES and must be handled at the level of the OS binding
layer. q

2.6 Begin/End Paradigm

The Safety Critical profile supports the concept of Begin/End and display lists. Edge flags are not supported.
The primitives POINTS, LINES, LINE STRIP, LINE LOOP, TRIANGLES, TRIANGLE STRIP, and TRIANGLE -

FAN are supported; the primitives QUADS, QUAD STRIP, and POLYGON are not supported.
Color index rendering is not supported. Edge flags are not supported.

OpenGL 1.3 Safety Critical
Begin(enum mode)

mode = POINTS,LINES,LINE STRIP,LINE LOOP �
mode = TRIANGLES,TRIANGLE STRIP,TRIANGLE FAN �
mode = QUADS,QUAD STRIP,POLYGON –

End(void) �
EdgeFlag[v](T flag) –

n The Common profile includes vertex arrays since 1.0 and vertex buffer objects since 1.1, but
dropped the Begin/End paradigm including display lists to reduce implementation size. The Be-
gin/End paradigm is supported because there are a majority of 2D Safety Critical certifiable/qualifiable
applications and tools that rely on this mechanism. The Begin/End paradigm enables a melding of
program and data in such a way as to allow a certifying authority to more clearly understand an
application.
Edge flags are not included, as they are only used when drawing polygons as outlines and support
for PolygonMode has not been included. Quads and polygons are eliminated since they can be
readily emulated with triangles and it reduces the ambiguity with respect to decomposition of these
primitives into triangles, since it is entirely left to the application. float types are supported for
all-around generality. q

2.7 Vertex Specification

Vertices can be specified between Begin and End, as well as with vertex arrays. Only float, coordinate and
component types are supported with the exception of ubyte rather than short color components. There is
limited support for specifying the current color, normal, and texture coordinate using the commands Color4,
Normal3, and MultiTexCoord2.

Multitexture texture coordinates are supported, though only a single texture unit needs to be supported.

OpenGL 1.3 Safety Critical
Vertex{23}f[v](T coords) �
Vertex{234}{sid}[v](T coords) –

OpenGL Operation 5

Vertex4f[v](T coords) –
Normal3f[v](float coords) �
Normal3{bsid}[v](T coords) –
TexCoord{1234}{sifd}[v](T coords) –
MultiTexCoord2f(enum texture, float coords) �
MultiTexCoord2fv(enum texture, float coords) –
MultiTexCoord2{sid}[v](enum texture, float coords) –
MultiTexCoord134{sifd}[v](enum texture, T coords) –
Color4{f fv ub}(float components) �
Color4{bsid us ui}[v](T components) –
Color3{bsifd ub us ui}[v](T components) –
Index{sifd ub}[v](T components) –

n The Begin/End paradigm commands that have been included are based on common usage in
Safety Critical applications and code-generation tools. These have been augmented with the aim
of forming an orthogonal set – e.g. if a usage is available for a normal, then it is also available for
coordinate data, etc.
Only 2-d texture coordinates can be specified – only 2-d textures are available, and texture matrix
operations are not supported – so only 2 coordinates are useful.
The Safety Critical profile supports only the RGBA rendering model. Color index rendering is not a
requirement. q

2.8 Vertex Arrays

Vertex arrays are supported with the same set of primitives available to Begin/End. Color index and edge
flags are not supported. Both indexed and non-indexed arrays are supported, but the InterleavedArrays,
ArrayElement and DrawRangeElements commands are not supported.

OpenGL 1.3 Safety Critical
VertexPointer(int size, enum type, sizei stride, const void *ptr)

size = 2,3 type = FLOAT �
size = 4 type = FLOAT –
size = * type = INT,SHORT,DOUBLE –

NormalPointer(enum type, sizei stride, const void *ptr)

type = FLOAT �
type = BYTE,UNSIGNED BYTE,SHORT,UNSIGNED SHORT –
type = INT,UNSIGNED INT,DOUBLE –

ColorPointer(int size, enum type, sizei stride, const void *ptr)

type = UNSIGNED BYTE,FLOAT �
type = BYTE,SHORT,UNSIGNED SHORT –
type = INT,UNSIGNED INT,DOUBLE –

6 OpenGL Operation

TexCoordPointer(int size, enum type, sizei stride, const void *ptr)

size = 2 type = FLOAT �
all other combinations –

EdgeFlagPointer(sizei stride, const void *ptr) –
IndexPointer(enum type, sizei stride, const void *ptr) –
ArrayElement(int i) –
DrawArrays(enum mode, int first, sizei count)

mode = POINTS,LINES,LINE STRIP,LINE LOOP �
mode = TRIANGLES,TRIANGLE STRIP,TRIANGLE FAN �
mode = QUADS,QUAD STRIP,POLYGON –

DrawElements(enum mode, sizei count, enum type, const void *indices)

mode = POINTS,LINES,LINE STRIP,LINE LOOP �
mode = TRIANGLES,TRIANGLE STRIP,TRIANGLE FAN �
mode = QUADS,QUAD STRIP,POLYGON –
type = UNSIGNED BYTE,UNSIGNED INT �
type = UNSIGNED SHORT –

InterleavedArrays(enum format, sizei stride, const void

*pointer)

–

DrawRangeElements(enum mode, uint start, uint end,

sizei count, enum type, const void *indices)

–

ClientActiveTexture(enum texture) �
EnableClientState(enum cap) �
DisableClientState(enum cap) �

n The Common profile 1.0 and 1.1 support the same set of functions. However, the supported types
were limited to the ones commonly used by Safety Critical applications.
Vertex arrays offer a performance improvement over Begin/End, particularly when rendering many
elements of the same primitive at a time, such as in terrain rendering applications.
To further improve performance, vertex buffer objects will be a candidate for 1.1. q

2.9 Rectangles

The commands for directly specifying rectangles are not supported.

OpenGL 1.3 Safety Critical
Rectf(T x1, T y1, T x2, T y2) –
Rect{sid}(T x1, T y1, T x2, T y2) –
Rect{sifd}v(T v1[2], T v2[2]) –

n Although rectangle commands are used by existing Safety Critical applications, they can be readily
emulated by rendering triangle strips. q

OpenGL Operation 7

2.10 Coordinate Transformations

The full transformation pipeline is supported with the following exceptions: no support for specification
of double-precision matrices and transformation parameters; no support for the transpose form of the
LoadMatrix and MultMatrix commands; no support for COLOR matrix and TEXTURE matrix; and no support
for texture coordinate generation. The double-precision only commands DepthRange, Frustum, and Ortho
are replaced with single-precision variants from the OES single precision extension.

OpenGL 1.3 Safety Critical
DepthRange(clampd n, clampd f) ♦
Viewport(int x, int y, sizei w, sizei h) �
MatrixMode(enum mode)

mode = MODELVIEW,PROJECTION �
mode = COLOR,TEXTURE –

LoadMatrixf(float m[16]) �
LoadMatrixd(double m[16]) –
MultMatrixf(float m[16]) �
MultMatrixd(double m[16]) –
LoadTransposeMatrix{fd}(T m[16]) –
MultTransposeMatrix{fd}(T m[16]) –
LoadIdentity(void) �
Rotatef(float angle, float x, float y, float z) �
Rotated(double angle, double x, double y, double z) –
Scalef(float x, float y, float z) �
Scaled(double x, double y, double z) –
Translatef(float x, float y, float z) �
Translated(double x, double y, double z) –
Frustum(double l, double r, double b, double t,

double n, double f)

♦

Ortho(double l, double r, double b, double t, double

n, double f)

♦

ActiveTexture(enum texture) �
PushMatrix(void)
PROJECTION (2 deep) �
MODELVIEW (16 deep) �
TEXTURE –

PopMatrix(void) �
Enable/Disable(RESCALE NORMAL) �
Enable/Disable(NORMALIZE) �
TexGen{ifd}[v](enum coord, enum pname, T param) –
GetTexGen{ifd}v(enum coord, enum pname, T *params) –
Enable/Disable(TEXTURE GEN {STRQ}) –

8 OpenGL Operation

n The double-precision version of the transform commands are not necessary when there is a single
precision version. The matrix stacks and convenience functions for computing rotations, scales, and
translations, as well as projection matrices with the exception of texture matrices are kept since they
are used by a large number of applications. Inclusion of the texture matrix stack will be considered
for 1.1. The non-transpose form of the matrix load and multiply commands are retained over the
transpose versions to maximize compatibility with existing programming practices.
The viewport and depth range commands are supported since they provide necessary application
control over where primitives are drawn. Texture transformation is not a requirement, and so it is not
included. While the texgen command is useful, it is considered too much of an implementation burden
(applications can implement it to some extent themselves). Both normalization and rescaling of
normals are supported since normalization is deemed necessary and rescaling can be implemented
using normalization minimizing implementation burden. q

2.11 Clipping

Clipping against the viewing frustum is supported; however, separate user-specified clipping planes are not
supported.

OpenGL 1.3 Safety Critical
ClipPlane(enum plane, const double *equation) –
GetClipPlane(enum plane, double *equation) –
Enable/Disable(CLIP PLANE{0-5}) –

n User-specified clipping planes aren’t required by current Safety Critical applications. User-specified
clipping planes will be a candidate for 1.1. q

2.12 Current Raster Position

The concept of the current raster position for positioning pixel rectangles and bitmaps is supported. Current
raster state and commands for setting the raster position are supported.

OpenGL 1.3 Safety Critical
RasterPos2{sifd}[v](T coords) –
RasterPos3f(T coords) �
RasterPos3fv(T coords) –
RasterPos3{sid}[v](T coords) –
RasterPos4{sifd}[v](T coords) –

n Bitmaps and pixel image primitives are supported. These primitives are positioned using the raster
position command. Similar, to the Color, Normal, etc., commands, the most general floating-point
form is supported. q

OpenGL Operation 9

2.13 Colors and Coloring

The OpenGL 1.3 lighting model is supported with the following exceptions: no support for the color index
lighting, secondary color, different front and back materials, local viewer, or color material mode other than
AMBIENT AND DIFFUSE.

Only directional lights are supported. An implementation must support a minimum of 2 lights. The
Material command cannot independently change the front and back face properties, so the result is that
materials always have the same front and back properties. Two-sided lighting is not supported. The Col-
orMaterial command is not supported, so the color material mode cannot be changed from the default
AMBIENT AND DIFFUSE mode, though COLOR MATERIAL can be enabled in this mode. Neither local view-
ing computations nor separate specular color computation can be enabled using the LightModel command,
therefore only the OpenGL 1.3 default infinite viewer and single color computational models are supported.
Smooth and flat shading are fully supported for all primitives.

OpenGL 1.3 Safety Critical
FrontFace(enum mode) �
Enable/Disable(LIGHTING) �
Enable/Disable(LIGHT{0-1}) �
Materialf[v](enum face, enum pname, T param)

face = FRONT AND BACK �
face = FRONT,BACK –
pname = AMBIENT,DIFFUSE,SPECULAR,EMISSION,SHININESS �
pname = AMBIENT AND DIFFUSE �
pname = COLOR INDEXES –

Materiali[v](enum face, enum pname, T param) –
GetMaterialfv(enum face, enum pname, T *params)

pname = AMBIENT,DIFFUSE,SPECULAR,EMISSION,SHININESS �
pname = COLOR INDEXES –

GetMateriali[v](enum face, enum pname, int *params) –
GetMaterialf(enum face, enum pname, float *params) –
Lightfv(enum light, enum pname, T param)

pname = AMBIENT,DIFFUSE,SPECULAR �
pname = POSITION �
pname = SPOT CUTOFF,SPOT DIRECTION,SPOT EXPONENT –
pname = CONSTANT ATTENUATION –
pname = LINEAR ATTENUATION –
pname = QUADRATIC ATTENUATION –

Lightf(enum light, enum pname, T param) –
Lighti[v](enum light, enum pname, T param) –
GetLightfv(enum light, enum pname, T *params)

pname = AMBIENT,DIFFUSE,SPECULAR �
pname = POSITION �
pname = SPOT CUTOFF,SPOT DIRECTION,SPOT EXPONENT –
pname = CONSTANT ATTENUATION –
pname = LINEAR ATTENUATION –
pname = QUADRATIC ATTENUATION –

10 OpenGL Operation

GetLighti[v](enum light, enum pname, int *params) –
GetLightf(enum light, enum pname, float *params) –
LightModelf[v](enum pname, T param)

pname = LIGHT MODEL AMBIENT �
pname = LIGHT MODEL TWO SIDE –
pname = LIGHT MODEL COLOR CONTROL –
pname = LIGHT MODEL LOCAL VIEWER –

LightModeli[v](enum pname, T param) –
Enable/Disable(COLOR MATERIAL) �‡

ColorMaterial(enum face, enum mode) –
ShadeModel(enum mode) �

n Lighting is a desirable feature, in safety critical applications, it is not used for complex cosmetic
effects, or to model ”real-life” lighting. Rather, it might be used to add shading to a relief map, or
to add a ”3D” feel to an instrument. To support this usage, only non-local lights are required (e.g.
directional lights) in the Safety Critical profile. The minimum number of lights is reduced to 2, which
greatly reduces the testing burden, while allowing for multiple lighting effects. Extensive research has
not shown any need for more than 2 light sources. Support for secondary color is not required so it is
not included. Local viewer and spot lights are not widely used - even in the workstation space, and is
is removed to reduce testing burden. Two-sided lighting is not required by Safety Critical applications
and removing this feature further simplifies certification tests. Scene ambient is retained since its
default value is non-zero and there would be no method to disable it’s effect if it were not included.
The most common use for the ColorMaterial functionality is to change the ambient and diffuse coef-
ficients of the material. Since this is the default mode of the command, the ColorMaterial command
is not included, but the ability to enable and disable it is, so the net effect is that only the ambient and
diffuse material parameters can be modified. q

Chapter 3

Rasterization

3.1 Invariance

The invariance rules are retained in full.

3.2 Antialiasing

Multisampling is not supported.

OpenGL 1.3 Safety Critical
Enable/Disable(MULTISAMPLE) –

n The Common profile specifies multisampling as optional. There is no demand for multisampling
by current Safety Critical (2D) applications. Polygon smoothing or line smoothing along the edges is
sufficient and more appropriate for current applications. Multisampling will be a candidate for 1.1. q

3.3 Points

Aliased and antialiased points are fully supported.

OpenGL 1.3 Safety Critical
PointSize(float size) �
Enable/Disable(POINT SMOOTH) �

n See below. q

3.4 Line Segments

Aliased and antialiased lines are fully supported. Line stippling is also fully supported.

11

12 Rasterization

OpenGL 1.3 Safety Critical
LineWidth(float width) �
Enable/Disable(LINE SMOOTH) �
LineStipple(int factor, ushort pattern) �
Enable/Disable(LINE STIPPLE) �

n Antialiasing is important for visual quality, an important issue in many safety critical applications.
Some antialiasing can be implemented within the application using 2D textures, but antialiasing is
used by enough applications that it should be in the profile rather than something left to the appli-
cation. The OpenGL 1.3 point and line antialiasing requirements provide substantial implementation
latitude. In particular, only size/width 1.0 is required to be supported and the coverage computation
constraints are easily satisfied. Line stippling is also commonly used in safety critical applications. q

3.5 Polygons

Polygonal geometry support is reduced to triangle strips, triangle fans and independent triangles. All raster-
ization modes are supported except for point and line PolygonMode and POLYGON SMOOTH. Depth offset is
supported in FILL mode only.

OpenGL 1.3 Safety Critical
CullFace(enum mode) �
Enable/Disable(CULL FACE) �
PolygonMode(enum face, enum mode) –
Enable/Disable(POLYGON SMOOTH) –
PolygonStipple(const ubyte *mask) �
GetPolygonStipple(ubyte *mask) �
Enable/Disable(POLYGON STIPPLE) �
PolygonOffset(float factor, float units) �
Enable/Disable(enum cap)

cap = POLYGON OFFSET FILL �
cap = POLYGON OFFSET LINE, POLYGON OFFSET POINT –

n Support for all triangle types (independents, strips, fans) is not overly burdensome and each type
has some desirable utility: strips for general performance and applicability, independents for efficiently
specifying unshared vertex attributes, and fans for representing ”corner-turning” geometry. Polygon
modes are mostly used for debugging purposes, and are therefore not supported. Polygon smooth is
as desirable as antialiasing for other primitives. However, its usefulness without support for polygon
primitives and edge flag is very limited; Polygon smooth is therefore not supported. Face culling is
important for eliminating unnecessary rasterization. Polygon stippling is commonly used in safety
critical applications. Polygon offset for filled triangles is necessary for rendering coplanar and outline
polygons and if not present requires either stencil buffers or application tricks. q

Rasterization 13

3.6 Pixel Rectangles

Support for drawing pixel rectangles is limited to the format RGBA and type UNSIGNED BYTE. Limited
PixelStore support is retained to allow different pack alignments for ReadPixels and unpack alignments for
Bitmap, DrawPixels and TexImage2D. PixelTransfer modes and PixelZoom are not supported. The Imaging
subset is not supported.

OpenGL 1.3 Safety Critical
PixelStorei(enum pname, T param)

pname = PACK ALIGNMENT,UNPACK ALIGNMENT �
pname = all other values –

PixelStoref(enum pname, T param) –
PixelTransfer{if}(enum pname, T param) –
PixelMap{ui us f}v(enum map, int size, T *values) –
GetPixelMap{ui us f}v(enum map, T *values) –

Enable/Disable(COLOR TABLE) –
ColorTable(enum target, enum internalformat, sizei

width, enum format, enum type, const void *table)

–

ColorSubTable(enum target, sizei start, sizei count,

enum format, enum type, const void *data)

–

ColorTableParameter{if}v(enum target, enum pname, T

*params)

–

GetColorTableParameter{if}v(enum target, enum pname, T

*params)

–

CopyColorTable(enum target, enum internalformat, int x,

int y, sizei width)

–

CopyColorSubTable(enum target, sizei start, int x, int

y, sizei width)

–

GetColorTable(enum target, enum format, enum type, void

*table)

–

ConvolutionFilter1D(enum target, enum internalformat,

sizei width, enum format, enum type, const void

*image)

–

ConvolutionFilter2D(enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void *image)

–

GetConvolutionFilter(enum target, enum format, enum type,

void *image)

–

CopyConvolutionFilter1D(enum target, enum internalformat,

int x, int y, sizei width)

–

CopyConvolutionFilter2D(enum target, enum internalformat,

int x, int y, sizei width, sizei height)

–

14 Rasterization

SeparableFilter2D(enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void *row, const void *column)

–

GetSeparableFilter(enum target, enum format, enum type,

void *row, void *column, void *span)

–

ConvolutionParameter{if}[v](enum target, enum pname, T

param)

–

GetConvolutionParameterfv(enum target, enum pname, T

*params)

–

Enable/Disable(POST CONVOLUTION COLOR TABLE) –
MatrixMode(COLOR) –
Enable/Disable(POST COLOR MATRIX COLOR TABLE) –

Enable/Disable(HISTOGRAM) –
Histogram(enum target, sizei width, enum

internalformat, boolean sink)

–

ResetHistogram(enum target) –
GetHistogram(enum target, boolean reset, enum format,

enum type, void *values)

–

GetHistogramParameter{if}v(enum target, enum pname, T

*params)

–

Enable/Disable(MINMAX) –
Minmax(enum target, enum internalformat, boolean

sink)

–

ResetMinmax(enum target) –
GetMinmax(enum target, boolean reset, enum format,

enum types, void *values)

–

GetMinmaxParameter{if}v(enum target, enum pname, T

*params)

–

DrawPixels(sizei width, sizei height, enum format, enum type, void *data)

format = RGBA type = UNSIGNED BYTE �
all other combinations –

PixelZoom(float xfactor, float yfactor) –

n The OpenGL 1.3 specification includes substantial support for operating on pixel images. Safety
Critical applications require the ability to draw images directly in window coordinates, but with the
constraint of minimizing the certification burden. To that end, the set of supported image formats
and types is limited to one general format: RGBA with 8-bit components. There is minimal support
for operating on images. The one exception is limited pixel storage mode support to allow different
alignment options (other than the 4-byte OpenGL 1.0 default). PixelZoom and PixelTransfer are not
used by Safety Critical applications.

Rasterization 15

The command PixelStore must be included to allow changing the pack alignment for ReadPixels and
unpack alignment for TexImage2D to something other than the default value of 4 to support ubyte
RGB image formats. The integer version of PixelStore is retained rather than the floating-point version
since all parameters can be fully expressed using integer values. q

3.7 Bitmaps

Bitmap images are fully supported.

OpenGL 1.3 Safety Critical
Bitmap(sizei width, sizei height, float xorig,

float yorig, float xmove, float ymove, const ubyte

*bitmap)

�

n The Bitmap command doesn’t offer any functionality which is not covered by DrawPixels. It is
supported because Safety Critical applications are using it to save memory usage on the host. q

3.8 Texturing

1D textures, 3D textures, and cube maps are not supported. 2D textures are supported with the following
exceptions: only a limited number of image formats are supported, listed in Table 3.1. Only the image type
UNSIGNED BYTE is supported. The only internal formats supported are the base internal formats: RGBA,
RGB, LUMINANCE, ALPHA, and LUMINANCE ALPHA. The format must match the base internal format (no
conversions from one format to another during texture image processing are supported) as described in
Table 3.1.

Additional restrictions apply to loading of previously loaded texture levels: internalformat must be
identical to any previously loaded texture level. width must be 2n + 2(border), and if mipmapping is
enabled must be a possible size for the level specified based on the size of width for other previously loaded
levels. height must be 2n + 2(border), and if mipmapping is enabled must be a possible size for the level
specified based on the size of height for other previously loaded levels. border must be identical to any
previously loaded texture level. These restrictions hold true if any level of the active texture, including
the one being loaded, have been previously loaded. These restrictions have no bearing if the level being
loaded is the first texture loaded for the currently bound texture unit. If these restrictions are violated, an
INVALID OPERATION is generated.

Texture borders are not supported (the border parameter must be zero, and an INVALID VALUE error
results if it is non-zero).

CopyTexture, CopyTexSubImage and compressed textures are not supported.

OpenGL 1.3 Safety Critical
UNSIGNED BYTE �
BITMAP –
BYTE –
UNSIGNED SHORT –

16 Rasterization

SHORT –
UNSIGNED INT –
INT –
FLOAT –
UNSIGNED BYTE 3 3 2 –
UNSIGNED BYTE 3 3 2 REV –
UNSIGNED SHORT 5 6 5 –
UNSIGNED SHORT 5 6 5 REV –
UNSIGNED SHORT 4 4 4 4 –
UNSIGNED SHORT 4 4 4 4 REV –
UNSIGNED SHORT 5 5 5 1 –
UNSIGNED SHORT 5 5 5 1 REV –
UNSIGNED INT 8 8 8 8 –
UNSIGNED INT 8 8 8 8 REV –
UNSIGNED INT 10 10 10 2 –
UNSIGNED INT 10 10 10 2 REV –

Table 3.2: Image Types

Wrap modes REPEAT and CLAMP TO EDGE are supported, but not CLAMP and CLAMP TO BORDER. Tex-
ture priorities, LOD clamps, and explicit base and maximum level specification are not supported. The
remaining OpenGL 1.3 texture parameters are supported including all filtering modes. Texture objects are
supported, but proxy textures are not supported. Multitexture is supported, but the COMBINE texture envi-
ronment mode is not.

OpenGL 1.3 Safety Critical
TexImage1D(enum target, int level, int

internalFormat, sizei width, int border, enum

format, enum type, const void *pixels)

–

TexImage2D(enum target, int level, int internalFormat, sizei width, sizei

height, int border, enum format, enum type, const void *pixels)

target = TEXTURE 2D, border = 0 �‡

target = PROXY TEXTURE 2D –
border > 0 –

TexImage3D(enum target, int level, enum

internalFormat, sizei width, sizei height, sizei

depth, int border, enum format, enum type, const

void *pixels)

–

GetTexImage(enum target, int level, enum format, enum

type, void *pixels)

–

TexSubImage1D(enum target, int level, int xoffset,

sizei width, enum format, enum type, const void

*pixels)

–

Rasterization 17

TexSubImage2D(enum target, int level, int xoffset,

int yoffset, sizei width, sizei height, enum format,

enum type, const void *pixels)

�‡

TexSubImage3D(enum target, int level, int xoffset, int

yoffset, int zoffset, sizei width, sizei height,

sizei depth, enum format, enum type, const void

*pixels)

–

CopyTexImage1D(enum target, int level, enum

internalformat, int x, int y, sizei width, int

border)

–

CopyTexImage2D(enum target, int level, enum

internalformat, int x, int y, sizei width, sizei

height, int border)

–

CopyTexSubImage1D(enum target, int level, int xoffset,

int x, int y, sizei width)

–

CopyTexSubImage2D(enum target, int level, int xoffset,

int yoffset, int x, int y, sizei width, sizei

height)

–

CopyTexSubImage3D(enum target, int level, int xoffset,

int yoffset, int zoffset, int x, int y, sizei width,

sizei height)

–

CompressedTexImage1D(enum target, int level, enum

internalformat, sizei width, int border, sizei

imageSize, const void *data)

–

CompressedTexImage2D(enum target, int level, enum

internalformat, sizei width, sizei height, int

border, sizei imageSize, const void *data)

–

CompressedTexImage3D(enum target, int level, enum

internalformat, sizei width, sizei height, sizei

depth, int border, sizei imageSize, const void

*data)

–

CompressedTexSubImage1D(enum target, int level, int

xoffset, sizei width, enum format, sizei imageSize,

const void *data)

–

CompressedTexSubImage2D(enum target, int level, int

xoffset, int yoffset, sizei width, sizei height,

enum format, sizei imageSize, const void *data)

–

CompressedTexSubImage3D(enum target, int level, int

xoffset, int yoffset, int zoffset, sizei width,

sizei height, sizei depth, enum format, sizei

imageSize, const void *data)

–

GetCompressedTexImage(enum target, int lod, void *img) –
TexParameteri(enum target, enum pname, int param)

target = TEXTURE 2D �
target = TEXTURE 1D,TEXTURE 3D,TEXTURE CUBE MAP –

18 Rasterization

pname = TEXTURE MIN FILTER,TEXTURE MAG FILTER �
pname = TEXTURE WRAP S,TEXTURE WRAP T �
pname = TEXTURE BORDER COLOR –
pname = TEXTURE MIN LOD,TEXTURE MAX LOD –
pname = TEXTURE BASE LEVEL,TEXTURE MAX LEVEL –
pname = TEXTURE WRAP R –
pname = TEXTURE PRIORITY –

TexParameter{iv f[v]}(enum target, enum pname, T param) –
GetTexParameterfv(enum target, enum pname, float

*params)

–

GetTexParameteriv(enum target, enum pname, int *params)

target = TEXTURE 2D �
target = TEXTURE 1D,TEXTURE 3D,TEXTURE CUBE MAP –
pname = TEXTURE MIN FILTER,TEXTURE MAG FILTER �
pname = TEXTURE WRAP S,TEXTURE WRAP T �
pname = TEXTURE BORDER COLOR –
pname = TEXTURE MIN LOD,TEXTURE MAX LOD –
pname = TEXTURE BASE LEVEL,TEXTURE MAX LEVEL –
pname = TEXTURE WRAP R –
pname = TEXTURE PRIORITY –

GetTexLevelParameter{if}v(enum target, int level, enum

pname, T *params)

–

BindTexture(enum target, uint texture)

target = TEXTURE 2D �
target = TEXTURE 1D,TEXTURE 3D,TEXTURE CUBE MAP –

DeleteTextures(sizei n, const uint *textures) –
GenTextures(sizei n, uint *textures) �
IsTexture(uint texture) –
AreTexturesResident(sizei n, uint *textures, boolean

*residences)

–

PrioritizeTextures(sizei n, uint *textures, clampf

*priorities)

–

Enable/Disable(enum cap)

cap = TEXTURE 2D �
cap = TEXTURE 1D,TEXTURE 3D,TEXTURE CUBE MAP –

TexEnvfv(enum target, enum pname, float *params)

pname = TEXTURE ENV COLOR �
pname = TEXTURE ENV MODE –
pname = COMBINE RGB,COMBINE ALPHA –
pname = SOURCE{012} RGB,SOURCE{012} ALPHA –
pname = RGB SCALE,ALPHA SCALE –

TexEnvi(enum target, enum pname, int param)

pname = TEXTURE ENV COLOR –
pname = TEXTURE ENV MODE:

param = MODULATE,REPLACE,DECAL �
param = BLEND,ADD �

Rasterization 19

param = COMBINE –
pname = COMBINE RGB,COMBINE ALPHA –
pname = SOURCE{012} RGB,SOURCE{012} ALPHA –
pname = RGB SCALE,ALPHA SCALE –

TexEnv{iv f}(enum target, enum pname, T param) –
GetTexEnvfv(enum target, enum pname, float *params)

pname = TEXTURE ENV COLOR �
pname = TEXTURE ENV MODE –
pname = COMBINE RGB,COMBINE ALPHA –
pname = SOURCE{012} RGB,SOURCE{012} ALPHA –
pname = RGB SCALE,ALPHA SCALE –

GetTexEnviv(enum target, enum pname, int *params)

pname = TEXTURE ENV COLOR –
pname = TEXTURE ENV MODE �
pname = COMBINE RGB,COMBINE ALPHA –
pname = SOURCE{012} RGB,SOURCE{012} ALPHA –
pname = RGB SCALE,ALPHA SCALE –

n Texturing with 2D images is a critical feature for mapping operations, and in some cases, for drawing
text with arbitrary position and orientation. 1D, 3D, and cube map textures are less important. Texture
objects are required for managing multiple textures. In some applications packing multiple textures
into a single large texture is necessary for performance, therefore subimage support is also included.

Texture deletion is not supported, as it is difficult to handle fragmentation and to meet real-time
constraints at the same time. A real-time friendly texture deletion mechanism will be considered for
1.1.

To further facilitate the texture memory manager to meet real-time constraints, possible modifications
of texture have been limited. Once a texture level is loaded, it cannot be modified in size. TexImage2D
is restricted to allow only modifications of a loaded texture level which do not affect its internalformat,
width, height or border.

A limited set of formats, types and internal formats is included. The RGB component ordering is
always RGBA rather than BGRA since there is no real perceived advantage to using BGRA. The
supported formats are the same as in the Common profile. The Common profiles support many low-
resolution types to save memory. Safety Critical devices are not as memory constrained as mobile
information devices. Textures with 8-bits per component are typical.

As opposed to the Common profile, copying from the framebuffer into textures is not supported,
since this feature has not been demanded. If this functionality was added, ”render to texture” would
be preferred for its efficiency.

Texture borders are not included, as the modern way is to use CLAMP TO EDGE. If proper transi-
tion/interpolation across tiled textures is necessary, a sub region of the texture (2n − 1) can be used.
All filter modes are supported since they represent a useful set of quality and speed options. Edge
clamp and repeat wrap modes are both supported since these are most commonly used.

Texture priorities are not supported since they are seldom used by applications. Similarly, the ability to
control the LOD range and the base and maximum mipmap image levels is not included, since these
features are used by a narrow set of applications. Since all of the supported texture parameters are
scalar valued, the vector form of the parameter command is eliminated.

20 Rasterization

Internal Format External Format Type Bytes per Pixel
RGBA RGBA UNSIGNED BYTE 4
RGB RGB UNSIGNED BYTE 3
LUMINANCE ALPHA LUMINANCE ALPHA UNSIGNED BYTE 2
LUMINANCE LUMINANCE UNSIGNED BYTE 1
ALPHA ALPHA UNSIGNED BYTE 1

Table 3.1: Texture Image Formats and Types

All OpenGL 1.3 texture environments except for the combine mode are supported. Combine is not
supported as it creates a substantial implementation burden and is expected to be replaced with pixel
shaders in some future version.
Compressed textures are important for reducing space and bandwidth requirements. In the safety-
critical space, texture compression is not an issue and is not included. In the safety-critical space,
texture priority, and ”residence” are not relevant - in this space, it is very important to have repeat-
able, consistent execution time, and so most implementations will choose only to maintain ”resident”
textures. q

3.9 Fog

Fog is not supported.

OpenGL 1.3 Safety Critical
Fog{if}[v](enum pname, T param) –
Enable/Disable(FOG) –

n The Common profile supports all fog modes. Current Safety Critical (2D) Applications are not using
fog. Terrain rendering application are expected to use this feature in the future. Fog is a candidate
for 1.1. q

Chapter 4

Per-Fragment Operations and the
Framebuffer

4.1 Per-Fragment Operations

Most per-fragment operation functionalities are reduced.
Color index related operations and the imaging subset additions (BlendColor and BlendEquation) are

not supported. Alpha test is supported for LEQUAL and ALWAYS. Blend func is supported for the following
combinations:

Source Factor Destination Factor
SRC ALPHA ONE MINUS SRC ALPHA

SRC ALPHA SATURATE ONE

ONE ZERO

Table 4.1: Blend Factor Combinations

Depth test is supported for LESS, LEQUAL, and ALWAYS. Depth masking is supported. All other masking
operations are not supported. Dithering and logic op is not supported. Scissor and stencil operations are
fully supported. An implementation is not required to include a depth or stencil buffer.

OpenGL 1.3 Safety Critical
Enable/Disable(SCISSOR TEST) �
Scissor(int x, int y, sizei width, sizei height) �

Enable/Disable(SAMPLE COVERAGE) –
Enable/Disable(SAMPLE ALPHA TO COVERAGE) –
Enable/Disable(SAMPLE ALPHA TO ONE) –
SampleCoverage(clampf value, boolean invert) –

Enable/Disable(ALPHA TEST) �
AlphaFunc(enum func, clampf ref)

21

22 Per-Fragment Operations and the Framebuffer

func = LEQUAL,ALWAYS �
func = all other values –

Enable/Disable(STENCIL TEST) �
StencilFunc(enum func, int ref, uint mask) �
StencilMask(uint mask) �
StencilOp(enum fail, enum zfail, enum zpass) �

Enable/Disable(DEPTH TEST) �
DepthFunc(enum func)

func = LESS,LEQUAL,ALWAYS �
func = all other values –

DepthMask(boolean flag) �

Enable/Disable(BLEND) �
BlendFunc(enum sfactor, enum dfactor)

sfactor = SRC ALPHA, dfactor = ONE MINUS SRC ALPHA �
sfactor = SRC ALPHA SATURATE, dfactor = ONE �
sfactor = ONE, dfactor = ZERO �
all other combinations –

BlendEquation(enum mode) –
BlendColor(clampf red, clampf green, clampf blue,

clampf alpha)

–

Enable/Disable(DITHER) –

Enable/Disable(INDEX LOGIC OP) –
Enable/Disable(COLOR LOGIC OP) –
LogicOp(enum opcode) –

n Scissor is useful for providing complete control over where pixels are drawn and some form of
window/drawing-surface scissoring is typically present in most rasterizers so the cost is small. Alpha
testing is useful for early rejection of transparent pixels and for some kinds of keying. Stenciling is
useful for drawing with masks and for a number of presentation effects and an implementation is
not required to support a stencil buffer (just the API and the correct behavior when not present).
Depth buffering is essential for many 3D applications and the profile should require some form of
depth buffer to be present. Blending is necessary for implementing transparency and smoothing,
other combinations of blend factors are removed to simplify certification tests. Additive blending will
be a candidate for 1.1. Dithering is not required since frame buffers usually offer a resolution of
8 bits per component or more. By removing dithering, no implementation algorithm needs to be
defined which would have to be tested for. Logic op is not used in the safety critical space. Its
omission will simplify certification tests. The Common profile includes all masked operations. In
the Safety Critical profile, masked operations other than DepthMask are not supported to simplify
certification. DepthMask allows depth test without updating the depth buffer, which is useful for
rendering transparent objects. In many cases, such as depth test, alpha test, blending, the number
of potential modes has been reduced in order to limit the certification burden. Many modes are

Per-Fragment Operations and the Framebuffer 23

included in OpenGL 1.3 for completeness, and are not useful to most applications. Depth test is not
only useful for correct depth occlusion, but also for visibility control of objects according to assigned
priorities. The depth comparison function LESS is default and is the most commonly used function.
The depth comparison function LEQUAL is useful to render screen aligned anti-aliased lines and
points correctly without requiring polygon offset. The depth comparison function ALWAYS is useful for
depth buffer shaping. In Safety Critical applications, it can be used to cut out complex instruments,
and for filtering priority classes of objects. DepthFunc(ALWAYS) and DepthMask complement each
other. q

4.2 Whole Framebuffer Operations

All whole framebuffer operations are supported except for color index related operations, drawing to differ-
ent color buffers, and accumulation buffer.

OpenGL 1.3 Safety Critical
DrawBuffer(enum mode) –
IndexMask(uint mask) –
ColorMask(boolean red, boolean green, boolean blue,

boolean alpha)

�

Clear(bitfield mask) �
ClearColor(clampf red, clampf green, clampf blue,

clampf alpha)

�

ClearIndex(float c) –
ClearDepth(clampd depth) ♦
ClearStencil(int s) �

ClearAccum(float red, float green, float blue, float

alpha)

–

Accum(enum op, float value) –

n Multiple drawing buffers are not exposed; an application can only draw to the default buffer, so
DrawBuffer is not necessary. The accumulation buffer is not used in many applications, though it is
useful as a non-interactive antialiasing technique. q

4.3 Drawing, Reading, and Copying Pixels

ReadPixels is supported with the following exceptions: the depth and stencil buffers cannot be read from
and the number of format and type combinations for ReadPixels is severely restricted (see DrawPixels). The
only format/type combination which is supported is format RGBA and type UNSIGNED BYTE. CopyPixels is
supported for color buffer only. ReadBuffer is not supported. Read operations return data from the default
color buffer.

24 Per-Fragment Operations and the Framebuffer

OpenGL 1.3 Safety Critical
ReadBuffer(enum mode) –
ReadPixels(int x, int y,sizei width, sizei height, enum

format, enum type, void *pixels)

�‡

CopyPixels(int x, int y, sizei width, sizei height, enum type)

type = COLOR �
type = DEPTH,STENCIL –

n Reading the color buffer is useful for some applications and also provides a platform independent
method for testing. Pixel copy performance is important some applications, and in addition, on those
platforms that support offscreen PBuffers, it provides the fastest possible mechanism for copying pre-
rendered portions of the screen into the current buffer. Drawing to and reading from the depth and
stencil buffers is not used frequently in applications (though it would be convenient for testing), so it
is not included. CopyPixels is supported to enable fast copy from a pbuffer. This allows the hardware
to be run at reduced clock speed to economize power consumption. ReadBuffer is not required since
the concept of multiple drawing buffers is not exposed. q

Chapter 5

Special Functions

5.1 Evaluators

Evaluators are not supported.

OpenGL 1.3 Safety Critical
Map1{fd}(enum target, T u1, T u2, int stride, int

order, T points)

–

Map2{fd}(enum target, T u1, T u2, int ustride, int

uorder, T v1, T v2, int vstride, int vorder, T

*points)

–

GetMap{ifd}v(enum target, enum query, T *v) –
EvalCoord{12}{fd}[v](T coord) –
MapGrid1{fd}(int un, T u1, T u2) –
MapGrid2{fd}(int un, T u1, T u2, T v1, T v2) –
EvalMesh1(enum mode, int i1, int i2) –
EvalMesh2(enum mode, int i1, int i2, int j1, int j2) –
EvalPoint1(int i) –
EvalPoint2(int i, int j) –

n Evaluators are not used by many applications other than sophisticated CAD applications. q

5.2 Selection

Selection is not supported.

OpenGL 1.3 Safety Critical
InitNames(void) –
LoadName(uint name) –
PushName(uint name) –

25

26 Special Functions

PopName(void) –
RenderMode(enum mode) –
SelectBuffer(sizei size, uint *buffer) –

n Selection is not used by many applications. There are other methods that applications can use to
implement picking operations. q

5.3 Feedback

Feedback is not supported.

OpenGL 1.3 Safety Critical
FeedbackBuffer(sizei size, enum type, float *buffer) –
PassThrough(float token) –

n Feedback is seldom used. q

5.4 Display Lists

Display lists are supported with the exception of CallList, IsList and DeleteLists. An implementation does
not need to support recursive display list execution (MAX LIST NESTING is at least 1).

OpenGL 1.3 Safety Critical
NewList(uint list, enum mode) �
EndList(void) �
CallList(uint list) –
CallLists(sizei n, enum type, const void *lists) �
ListBase(uint base) �
GenLists(sizei range) �
IsList(uint list) –
DeleteLists(uint list, sizei range) –

n Safety Critical applications using the Begin/End paradigm also use display lists to improve perfor-
mance. On a system with multiple applications running simultaneously, drivers are implemented in
such a way that one application cannot damage another. The drivers are rendering in indirect mode,
which has a penalty on bandwidth. Using display lists allows to reduce bandwidth requirements to
gain back performance.
CallList is not supported as the same functionality is already provided by CallLists. IsList is not
supported as it is not useful for state preservation.

Special Functions 27

Desktop OpenGL includes DeleteLists to allow complex applications to reclaim display list memory at
run-time. However, implementing DeleteLists requires ”real” memory management for handling the
display list names, adding a burden to the driver implementation. Also, it is difficult to implement
compacting or garbage-collection while respecting real-time constraints. Current Safety Critical ap-
plications rarely call DeleteLists, it is therefore feasible to omit DeleteLists and to push the memory
management issues from the driver to the application. Inclusion of DeleteLists or a replacement with
similar functionality will be considered for 1.1.
Nesting of display lists results in recursive execution of display lists. This is not desirable in Safety
Critical applications, as it makes the execution time of a display list less deterministic, failing to meet
a real-time constraint. The minimal maximum nesting depth is reduced to 1 to allow implementations
without recursive display list execution. q

5.5 Flush and Finish

Flush and Finish are supported.

OpenGL 1.3 Safety Critical
Flush(void) �
Finish(void) �

n Applications need some manner to guarantee rendering has completed, so Finish needs to be
supported. Flush can be trivially supported. q

5.6 Hints

Hints related to supported features are retained. The implementation must specify precisely how the func-
tionality referred to by each hint is implemented, including the semantics of FASTEST, NICEST, and in
particular DONT CARE.

OpenGL 1.3 Safety Critical
Hint(enum target, enum mode)

target = PERSPECTIVE CORRECTION HINT �
target = POINT SMOOTH HINT �
target = LINE SMOOTH HINT �
target = POLYGON SMOOTH HINT –
target = FOG HINT –
target = TEXTURE COMPRESSION HINT –

n Hints are supported because Safety Critical applications are typically developed on desktop sys-
tems where OpenGL implementations usually set the hint mode DONT CARE (the default) equal to
FASTEST. Safety Critical applications prefer to use NICEST, therefore the hints are being used. For
certification purposes, an implementation must document the semantics of the hint modes. q

Chapter 6

State and State Requests

6.1 Querying GL State

State queries are supported for static and dynamic states, errors (see GL Errors) and strings. Query of
derived dynamic states is not supported.

The values of the strings returned by GetString are specified as part of the profile definition. In particular,
the version string indicates the particular OpenGL ES profile as well as the version of that profile. Strings
are listed in Table 6.1.

As the profile is revised, the VERSION string is updated to indicate the revision. The string format is
fixed and includes the two-character profile identifier SC for the Safety Critical profile; and the two-digit
version number (X.Y).

Strings
VENDOR as defined by OpenGL 1.3
RENDERER as defined by OpenGL 1.3
VERSION ”OpenGL ES-SC 1.0”
EXTENSIONS as defined by OpenGL 1.3

Table 6.1: String State

Client and server attribute stacks are not supported by the profile; consequently, the commands PushAt-
trib, PopAttrib, PushClientAttrib, and PopClientAttrib are not supported.

OpenGL 1.3 Safety Critical
GetBooleanv(enum pname, boolean *params) �‡

GetClipPlane(enum plane, double eqn[4]) –
GetCompressedTexImage(enum target, int level, void

*image)

–

GetDoublev(enum pname, double *params) –
GetFloatv(enum pname, float *params) �‡

GetIntegerv(enum pname, int *params) �‡

GetLightfv(enum light, enum pname, float *params) �‡

28

State and State Requests 29

GetMapifdv(enum target, enum pname, T *params) –
GetMaterialfv(enum face, enum pname, float *params) �‡

GetMaterialiv(enum face, enum pname, int *params) –
GetPixelMapf ui usv(enum map, T *params) –
GetPointerv(enum pname, void **params) �‡

GetPolygonStipple(ubyte *mask) �
GetString(enum name) �
GetTexEnvfv(enum env, enum pname, float *params) �‡

GetTexEnviv(enum env, enum pname, int *params) �‡

GetTexGen{if}v(enum coord, enum pname, T *params) –
GetTexImage(enum target, int level, enum format, enum

type, void *pixels)

–

GetTexLevelParameter{if}v(enum target, int level, enum

pname, T *params)

–

GetTexParameterfv(enum target, enum pname, float

*params)

–

GetTexParameteriv(enum target, enum pname, int *params) �‡

IsEnabled(enum cap) �‡

IsTexture(uint texture) –
IsList(uint list) –
PushAttrib(bitfield mask) –
PopAttrib(void) –
PushClientAttrib(bitfield mask) –
PopClientAttrib(void) –

n For small and monolithic Safety Critical applications, there should never be the need for the to
query the OpenGL state. Anything which the application does that is based on a query of a static
piece of data, for example, could (and should) easily have been built into the application at compile
time, thus reducing the certification effort.

Large-Scale Safety Critical applications are composed of multiple modules, potentially from different
vendors. The modules are certified individually, simplifying the certification effort of the integrated
application.

Without a mechanism for state preservation, the vendors have to rely on conventions and complete-
ness of API documentation with respect to state changes. To allow defensive implementation of
middleware, either Gets or attribute stacks are required.

Gets are real-time friendlier: For hardware implementations, the queryable states can be shadowed.
The dynamic states can be queried within a predicted time window. Gets do not require dynamic
memory allocation. State memory management is pushed back to the application. Gets can also be
helpful for certification tests.

Attribute stacks are easier to use and may be more efficient when many states have to be changed.
Attribute stacks may be accelerated by hardware implementations. Attribute stacks have a stack size
limit.

As the real-time requirements which are easily satisfiable by Gets outweigh the convenience and
possible performance improvements of attribute stacks, the choice is to support Gets.

30 State and State Requests

The Common profile as of version 1.1 includes dynamic gets as well. A difference to the Common
profile is the query of matrix stack values. Code generators often use this feature to avoid keeping
track of the current matrices. The Common profile will support query of matrix stacks through an
extension.

Static gets ease conformance test porting and development of middleware for large-scale Safety
Critical applications. The certification burden of static gets is minimal. Although the values returned
by static gets could be obtained otherwise at build time, it is better to have a standard way to provide
this information.

The string queries are retained as they provide important versioning, and extension information. q

6.2 State Tables

The tables also indicate which state variables are obtained with what commands. State variables that can
be obtained using any of GetBooleanv, GetIntegerv, or GetFloatv are listed with just one of these commands
- the one that is most appropriate given the type of data to be returned and the profile used. These state
variables cannot be obtained using IsEnabled. However, state variables for which IsEnabled is listed as the
query command can also be obtained using GetBooleanv, GetIntegerv, and GetFloatv. State variables for
which any other command other than IsEnabled is listed as the query command can be obtained only by
using that command. State appearing in italics indicates unnamed state. All state has initial values identical
to those specified in OpenGL 1.3.

State Exposed Queriable Command
Begin/end object � – –
Previous line vertex � – –
First line-vertex flag � – –
First vertex of line loop � – –
Line stipple counter � – –
Polygon vertices – – –
Number of polygon vertices – – –
Previous two triangle strip vertices � – –
Number of triangle strip vertices � – –
Triangle strip A/B pointer � – –
Quad vertices – – –
Number of quad strip vertices – – –

Table 6.4: GL Internal begin-end state variables

State and State Requests 31

State Exposed Queriable Command
CURRENT COLOR � � GetFloatv
CURRENT INDEX – – –
CURRENT TEXTURE COORDS � � GetFloatv
CURRENT NORMAL � � GetFloatv
Color associated with last vertex � – –
Color index associated with last vertex – – –
Texture coordinates associated with last vertex � – –
CURRENT RASTER POSITION � – –
CURRENT RASTER DISTANCE � – –
CURRENT RASTER COLOR � � GetFloatv
CURERNT RASTER INDEX – – –
CURRENT RASTER TEXTURE COORDS � � GetFloatv
CURRENT RASTER POSITION VALID � – –
EDGE FLAG – – –

Table 6.5: Current Values and Associated Data

State Exposed Queriable Command
CLIENT ACTIVE TEXTURE � � GetIntegerv
VERTEX ARRAY � � IsEnabled
VERTEX ARRAY SIZE � � GetIntegerv
VERTEX ARRAY STRIDE � � GetIntegerv
VERTEX ARRAY TYPE � � GetIntegerv
VERTEX ARRAY POINTER � � GetPointerv
NORMAL ARRAY � � IsEnabled
NORMAL ARRAY STRIDE � � GetIntegerv
NORMAL ARRAY TYPE � � GetIntegerv
NORMAL ARRAY POINTER � � GetPointerv
COLOR ARRAY � � IsEnabled
COLOR ARRAY SIZE � � GetIntegerv
COLOR ARRAY STRIDE � � GetIntegerv
COLOR ARRAY TYPE � � GetIntegerv
COLOR ARRAY POINTER � � GetPointerv
INDEX ARRAY – – –
INDEX ARRAY STRIDE – – –
INDEX ARRAY TYPE – – –
INDEX ARRAY POINTER – – –

Table 6.6: Vertex Array Data

32 State and State Requests

State Exposed Queriable Command
TEXTURE COORD ARRAY � � IsEnabled
TEXTURE COORD ARRAY SIZE � � GetIntegerv
TEXTURE COORD ARRAY STRIDE � � GetIntegerv
TEXTURE COORD ARRAY TYPE � � GetIntegerv
TEXTURE COORD ARRAY POINTER � � GetPointerv
EDGE FLAG ARRAY – – –
EDGE FLAG ARRAY STRIDE – – –
EDGE FLAG ARRAY POINTER – – –

Table 6.7: Vertex Array Data (cont.)

State Exposed Queriable Command
COLOR MATRIX – – –
MODEL VIEW MATRIX � � GetFloatv
PROJECTION MATRIX � � GetFloatv
TEXTURE MATRIX – – –
VIEWPORT � � GetIntegerv
DEPTH RANGE � � GetFloatv
COLOR MATRIX STACK DEPTH – – –
MODELVIEW STACK DEPTH � � GetIntegerv
PROJECTION STACK DEPTH � � GetIntegerv
TEXTURE STACK DEPTH – – –
MATRIX MODE � � GetIntegerv
NORMALIZE � � IsEnabled
RESCALE NORMAL � � IsEnabled
CLIP PLANE{0-5} – – –

Table 6.8: Transformation State

State Exposed Queriable Command
FOG COLOR – – –
FOG INDEX – – –
FOG DENSITY – – –
FOG START – – –
FOG END – – –
FOG MODE – – –
FOG – – –
SHADE MODEL � � GetIntegerv

Table 6.9: Coloring

State and State Requests 33

State Exposed Queriable Command
LIGHTING � � IsEnabled
COLOR MATERIAL � � IsEnabled
COLOR MATERIAL PARAMETER – – –
COLOR MATERIAL FACE – – –
AMBIENT (material) � � GetMaterialfv
DIFFUSE (material) � � GetMaterialfv
SPECULAR (material) � � GetMaterialfv
EMISSION (material) � � GetMaterialfv
SHININESS (material) � � GetMaterialfv
LIGHT MODEL AMBIENT � � GetFloatv
LIGHT MODEL LOCAL VIEWER – – –
LIGHT MODEL TWO SIDE – – –
LIGHT MODEL COLOR CONTROL – – –
AMBIENT (lighti) � � GetLightfv
DIFFUSE (lighti) � � GetLightfv
SPECULAR (lighti) � � GetLightfv
POSITION (lighti) � � GetLightfv
CONSTANT ATTENUATION – – –
LINEAR ATTENUATION – – –
QUADRATIC ATTENUATION – – –
SPOT DIRECTION – – –
SPOT EXPONENT – – –
SPOT CUTOFF – – –
LIGHT{0-1} � � IsEnabled
COLOR INDEXES – – –

Table 6.10: Lighting

34 State and State Requests

State Exposed Queriable Command
POINT SIZE � � GetFloatv
POINT SMOOTH � � IsEnabled
LINE WIDTH � � GetFloatv
LINE SMOOTH � � IsEnabled
LINE STIPPLE PATTERN � � GetIntegerv
LINE STIPPLE REPEAT � � GetIntegerv
LINE STIPPLE � � IsEnabled
CULL FACE � � IsEnabled
CULL FACE MODE � � GetIntegerv
FRONT FACE � � GetIntegerv
POLYGON SMOOTH – – –
POLYGON MODE – – –
POLYGON OFFSET FACTOR � � GetFloatv
POLYGON OFFSET UNITS � � GetFloatv
POLYGON OFFSET POINT – – –
POLYGON OFFSET LINE – – –
POLYGON OFFSET FILL � � IsEnabled
polygon stipple pattern � � GetPolygonStipple
POLYGON STIPPLE � � IsEnabled

Table 6.11: Rasterization

State Exposed Queriable Command
MULTISAMPLE – – –
SAMPLE ALPHA TO COVERAGE – – –
SAMPLE ALPHA TO ONE – – –
SAMPLE COVERAGE – – –
SAMPLE COVERAGE VALUE – – –
SAMPLE COVERAGE INVERT – – –

Table 6.12: Multisampling

State and State Requests 35

State Exposed Queriable Command
TEXTURE 1D – – –
TEXTURE 2D � � IsEnabled
TEXTURE 3D – – –
TEXTURE CUBE MAP – – –
TEXTURE BINDING 1D – – –
TEXTURE BINDING 2D � � GetIntegerv
TEXTURE BINDING 3D – – –
TEXTURE BINDING CUBE MAP – – –
TEXTURE CUBE MAP POSITIVE X – – –
TEXTURE CUBE MAP NEGATIVE X – – –
TEXTURE CUBE MAP POSITIVE Y – – –
TEXTURE CUBE MAP NEGATIVE Y – – –
TEXTURE CUBE MAP POSITIVE Z – – –
TEXTURE CUBE MAP NEGATIVE Z – – –
TEXTURE WIDTH � – –
TEXTURE HEIGHT � – –
TEXTURE DEPTH – – –
TEXTURE BORDER – – –
TEXTURE INTERNAL FORMAT � – –
TEXTURE RED SIZE � – –
TEXTURE GREEN SIZE � – –
TEXTURE BLUE SIZE � – –
TEXTURE ALPHA SIZE � – –
TEXTURE LUMINANCE SIZE � – –
TEXTURE INTENSITY SIZE – – –
TEXTURE COMPRESSED – – –
TEXTURE COMPRESSED IMAGE SIZE – – –
TEXTURE BORDER COLOR – – –
TEXTURE MIN FILTER � � GetTexParameteriv
TEXTURE MAG FILTER � � GetTexParameteriv
TEXTURE WRAP S � � GetTexParameteriv
TEXTURE WRAP T � � GetTexParameteriv
TEXTURE WRAP R – – –
TEXTURE PRIORITY – – –
TEXTURE RESIDENT – – –
TEXTURE MIN LOD � – –
TEXTURE MAX LOD � – –
TEXTURE BASE LEVEL � – –
TEXTURE MAX LEVEL � – –

Table 6.13: Texture Objects

36 State and State Requests

State Exposed Queriable Command
ACTIVE TEXTURE � � GetIntegerv
TEXTURE ENV MODE � � GetTexEnviv
TEXTURE ENV COLOR � � GetTexEnvfv
TEXTURE GEN {STRQ} – – –
EYE PLANE – – –
OBJECT PLANE – – –
TEXTURE GEN MODE – – –
COMBINE RGB – – –
COMBINE ALPHA – – –
SOURCE{012} RGB – – –
SOURCE{012} ALPHA – – –
OPERAND{012} RGB – – –
OPERAND{012} ALPHA – – –
RGB SCALE – – –
ALPHA SCALE – – –

Table 6.14: Texture Environment and Generation

State and State Requests 37

State Exposed Queriable Command
SCISSOR TEST � � IsEnabled
SCISSOR BOX � � GetIntegerv
ALPHA TEST � � IsEnabled
ALPHA TEST FUNC � � GetIntegerv
ALPHA TEST REF � � GetFloatv
STENCIL TEST � � IsEnabled
STENCIL FUNC � � GetIntegerv
STENCIL VALUE MASK � � GetIntegerv
STENCIL REF � � GetIntegerv
STENCIL FAIL � � GetIntegerv
STENCIL PASS DEPTH FAIL � � GetIntegerv
STENCIL PASS DEPTH PASS � � GetIntegerv
DEPTH TEST � � IsEnabled
DEPTH FUNC � � GetIntegerv
BLEND � � IsEnabled
BLEND SRC � � GetIntegerv
BLEND DST � � GetIntegerv
BLEND EQUATION – – –
BLEND COLOR – – –
DITHER – – –
INDEX LOGIC OP – – –
COLOR LOGIC OP – – –
LOGIC OP MODE – – –

Table 6.15: Pixel Operations

State Exposed Queriable Command
DRAW BUFFER – – –
INDEX WRITEMASK – – –
COLOR WRITEMASK � � GetBooleanv
DEPTH WRITEMASK � � GetBooleanv
STENCIL WRITEMASK � � GetIntegerv
COLOR CLEAR VALUE � � GetFloatv
INDEX CLEAR VALUE – – –
DEPTH CLEAR VALUE � � GetFloatv
STENCIL CLEAR VALUE � � GetIntegerv
ACCUM CLEAR VALUE – – –

Table 6.16: Framebuffer Control

38 State and State Requests

State Exposed Queriable Command
UNPACK SWAP BYTES – – –
UNPACK LSB FIRST – – –
UNPACK IMAGE HEIGHT – – –
UNPACK SKIP IMAGES – – –
UNPACK ROW LENGTH – – –
UNPACK SKIP ROWS – – –
UNPACK SKIP PIXELS – – –
UNPACK ALIGNMENT � � GetIntegerv
PACK SWAP BYTES – – –
PACK LSB FIRST – – –
PACK IMAGE HEIGHT – – –
PACK SKIP IMAGES – – –
PACK ROW LENGTH – – –
PACK SKIP ROWS – – –
PACK SKIP PIXELS – – –
PACK ALIGNMENT � � GetIntegerv
MAP COLOR – – –
MAP STENCIL – – –
INDEX SHIFT – – –
INDEX OFFSET – – –
RED SCALE – – –
GREEN SCALE – – –
BLUE SCALE – – –
ALPHA SCALE – – –
DEPTH SCALE – – –
RED BIAS – – –
GREEN BIAS – – –
BLUE BIAS – – –
ALPHA BIAS – – –
DEPTH BIAS – – –
COLOR TABLE – – –
POST CONVOLUTION COLOR TABLE – – –
POST COLOR MATRIX COLOR TABLE – – –
COLOR TABLE FORMAT – – –
COLOR TABLE WIDTH – – –
COLOR TABLE RED SIZE – – –
COLOR TABLE GREEN SIZE – – –
COLOR TABLE BLUE SIZE – – –
COLOR TABLE ALPHA SIZE – – –
COLOR TABLE LUMINANCE SIZE – – –
COLOR TABLE INTENSITY SIZE – – –
COLOR TABLE SCALE – – –
COLOR TABLE BIAS – – –

Table 6.17: Pixels

State and State Requests 39

State Exposed Queriable Command
CONVOLUTION 1D – – –
CONVOLUTION 2D – – –
SEPARABLE 2D – – –
CONVOLUTION – – –
CONVOLUTION BORDER COLOR – – –
CONVOLUTION BORDER MODE – – –
CONVOLUTION FILTER SCALE – – –
CONVOLUTION FILTER BIAS – – –
CONVOLUTION FORMAT – – –
CONVOLUTION WIDTH – – –
CONVOLUTION HEIGHT – – –
POST CONVOLUTION RED SCALE – – –
POST CONVOLUTION GREEN SCALE – – –
POST CONVOLUTION BLUE SCALE – – –
POST CONVOLUTION ALPHA SCALE – – –
POST CONVOLUTION RED BIAS – – –
POST CONVOLUTION GREEN BIAS – – –
POST CONVOLUTION BLUE BIAS – – –
POST CONVOLUTION ALPHA BIAS – – –
POST COLOR MATRIX RED SCALE – – –
POST COLOR MATRIX GREEN SCALE – – –
POST COLOR MATRIX BLUE SCALE – – –
POST COLOR MATRIX ALPHA SCALE – – –
POST COLOR MATRIX RED BIAS – – –
POST COLOR MATRIX GREEN BIAS – – –
POST COLOR MATRIX BLUE BIAS – – –
POST COLOR MATRIX ALPHA BIAS – – –
HISTOGRAM – – –
HISTOGRAM WIDTH – – –
HISTOGRAM FORMAT – – –
HISTOGRAM RED SIZE – – –
HISTOGRAM GREEN SIZE – – –
HISTOGRAM BLUE SIZE – – –
HISTOGRAM ALPHA SIZE – – –
HISTOGRAM LUMINANCE SIZE – – –
HISTOGRAM SINK – – –

Table 6.18: Pixels (cont.)

40 State and State Requests

State Exposed Queriable Command
MINMAX – – –
MINMAX FORMAT – – –
MINMAX SINK – – –
ZOOM X – – –
ZOOM Y – – –
PIXEL MAP I TO I – – –
PIXEL MAP S TO S – – –
PIXEL MAP I TO {RGBA} – – –
PIXEL MAP R TO R – – –
PIXEL MAP G TO G – – –
PIXEL MAP B TO B – – –
PIXEL MAP A TO A – – –
PIXEL MAP x TO y SIZE – – –
READ BUFFER – – –

Table 6.19: Pixels (cont.)

State Exposed Queriable Command
ORDER – – –
COEFF – – –
DOMAIN – – –
MAP1 x – – –
MAP2 x – – –
MAP1 GRID DOMAIN – – –
MAP2 GRID DOMAIN – – –
MAP1 GRID SEGMENTS – – –
MAP2 GRID SEGMENTS – – –
AUTO NORMAL – – –

Table 6.20: Evaluators

State Exposed Queriable Command
PERSPECTIVE CORRECTION HINT � � GetIntegerv
POINT SMOOTH HINT � � GetIntegerv
LINE SMOOTH HINT � � GetIntegerv
POLYGON SMOOTH HINT – – –
FOG HINT – – –
TEXTURE COMPRESSION HINT – – –

Table 6.21: Hints

State and State Requests 41

State Exposed Queriable Command
MAX LIGHTS � � GetIntegerv
MAX CLIP PLANES – – –
MAX COLOR MATRIX STACK DEPTH – – –
MAX MODELVIEW STACK DEPTH � � GetIntegerv
MAX PROJECTION STACK DEPTH � � GetIntegerv
MAX TEXTURE STACK DEPTH – – –
SUBPIXEL BITS � � GetIntegerv
MAX 3D TEXTURE SIZE – – –
MAX TEXTURE SIZE � � GetIntegerv
MAX CUBE MAP TEXTURE SIZE – – –
MAX PIXEL MAP TABLE – – –
MAX NAME STACK DEPTH – – –
MAX LIST NESTING � � GetIntegerv
MAX EVAL ORDER – – –
MAX VIEWPORT DIMS � � GetIntegerv
MAX ATTRIB STACK DEPTH – – –
MAX CLIENT ATTRIB STACK DEPTH – – –
Maximum size of a color table – – –
Maximum size of the histogram table – – –
AUX BUFFERS – – –
RGBA MODE – – –
INDEX MODE – – –
DOUBLEBUFFER – – –
ALIASED POINT SIZE RANGE � � GetFloatv
SMOOTH POINT SIZE RANGE � � GetFloatv
SMOOTH POINT SIZE GRANULARITY � � GetFloatv
ALIASED LINE WIDTH RANGE � � GetFloatv
SMOOTH LINE WIDTH RANGE � � GetFloatv
SMOOTH LINE WIDTH GRANULARITY � � GetFloatv

Table 6.22: Implementation Dependent Values

42 State and State Requests

State Exposed Queriable Command
MAX CONVOLUTION WIDTH – – –
MAX CONVOLUTION HEIGHT – – –
MAX ELEMENTS INDICES � � GetIntegerv
MAX ELEMENTS VERTICES � � GetIntegerv
MAX TEXTURE UNITS � � GetIntegerv
SAMPLE BUFFERS – – –
SAMPLES – – –
COMPRESSED TEXTURE FORMATS – – –
NUM COMPRESSED TEXTURE FORMATS – – –

Table 6.23: Implementation Dependent Values (cont.)

State Exposed Queriable Command
RED BITS � � GetIntegerv
GREEN BITS � � GetIntegerv
BLUE BITS � � GetIntegerv
ALPHA BITS � � GetIntegerv
INDEX BITS – – –
DEPTH BITS � � GetIntegerv
STENCIL BITS � � GetIntegerv
ACCUM BITS – – –

Table 6.24: Implementation Dependent Pixel Depths

State and State Requests 43

State Exposed Queriable Command
LIST BASE � � GetIntegerv
LIST INDEX � – –
LIST MODE � – –
Server attribute stack – – –
ATTRIB STACK DEPTH – – –
Client attribute stack – – –
CLIENT ATTRIB STACK DEPTH – – –
NAME STACK DEPTH – – –
RENDER MODE – – –
SELECTION BUFFER POINTER – – –
SELECTION BUFFER SIZE – – –
FEEDBACK BUFFER POINTER – – –
FEEDBACK BUFFER SIZE – – –
FEEDBACK BUFFER TYPE – – –
Current error code(s) � � GetError
Corresponding error flags � – –

Table 6.25: Miscellaneous

Chapter 7

Core Additions and Extensions

An OpenGL ES profile consists of two parts: a subset of the full OpenGL pipeline, and some extended
functionality that is drawn from a set of OpenGL ES-specific extensions to the full OpenGL specification.
Each extension is pruned to match the profile’s command subset and added to the profile as either a core
addition or a profile extension. Core additions differ from profile extensions in that the commands and
tokens do not include extension suffixes in their names.

Profile extensions are further divided into required (mandatory) and optional extensions. Required ex-
tensions must be implemented as part of a conforming implementation, whereas the implementation of
optional extensions are left to the discretion of the implementer. Both types of extensions use extension
suffixes as part of their names, are present in the EXTENSIONS string, and participate in function address
queries defined in the platform embedding layer. Required extensions have the additional packaging con-
straint, that commands defined as part of a required extension must also be available as part of a static
binding if core commands are also available in a static binding. The commands comprising an optional
extension may optionally be included as part of a static binding.

From an API perspective, commands and tokens comprising a core addition are indistinguishable from
the original OpenGL subset. However, to increase application portability, an implementation may also
implement a core addition as an extension by including suffixed versions of commands and tokens in the
appropriate dynamic and optional static bindings and the extension name in the EXTENSIONS string.

n Extensions preserve all traditional extension properties regardless of whether they are required
or optional. Required extensions must be present; therefore, additionally providing static bindings
simplifies application usage and reinforces the ubiquity of the extension. Permitting core additions
to be included as extensions allows extensions that are promoted to core additions in later profile
revisions to continue to be available as extensions, retaining application compatibility. q

Extension Name Extension Type
OES single precision core addition
EXT paletted texture required extension
EXT shared texture palette optional extension

Table 7.1: Safety Critical Extension Disposition

44

Core Additions and Extensions 45

7.1 Single-precision Commands

The OES single precision extension creates new single-precision parameter command variants of com-
mands that have no such variants (DepthRange, TexGen, Frustum, Ortho, etc.). Only the subset matching
the profile feature set is included in the Safety Critical profile.

DepthRangef(clampf n, clampf f)

Frustumf(float l, float r, float b, float t, float n, float f)

Orthof(float l, float r, float b, float t, float n, float f)

ClearDepthf(clampf depth)

7.2 Paletted Textures

The EXT paletted texture extension is supported only for texture internal format COLOR INDEX8 EXT.
Only the subset matching the profile feature set is included in the Safety Critical profile.

EXT paletted texture Safety Critical
TexImage2D(enum target, int level, int internalFormat, sizei width, sizei

height, int border, enum format, enum type, const void *pixels)

internalFormat = COLOR INDEX8 EXT, format = COLOR -

INDEX, type = UNSIGNED BYTE

�

GetTexLevelParameter{if}v(enum target, int level, enum

pname, T *params)

–

ColorTableEXT(enum target, enum internalformat, sizei width, enum format,

enum type, const void *data)

target = TEXTURE 2D �
target = all other values –

ColorSubTableEXT(enum target, sizei start, sizei count, enum format, enum

type, const void *data)

target = TEXTURE 2D �
target = all other values –

GetColorTableEXT(enum target, enum format, enum type, void *data)

target = TEXTURE 2D �
target = all other values –

GetColorTableParameterivEXT(enum target, enum pname, int *params)

target = TEXTURE 2D �
target = all other values –

GetColorTableParameterfvEXT(enum target, enum pname,

float *params)

–

n The EXT paletted texture extension separates textures into indices and palette. It allows
saving of texture memory and efficient modification of the palette without the need to update an
entire texture. q

46 Core Additions and Extensions

7.3 Shared Texture Palette

The support of EXT shared texture palette extension is optional. If it is supported, only the subset
matching the profile feature set is included in the Safety Critical profile.

EXT shared texture palette Safety Critical
Enable/Disable(SHARED TEXTURE PALETTE EXT) �
IsEnabled(SHARED TEXTURE PALETTE EXT) �
GetBooleanv(enum pname, boolean *params)

target = SHARED TEXTURE PALETTE EXT �
GetFloatv(enum pname, float *params)

target = SHARED TEXTURE PALETTE EXT �
GetIntegerv(enum pname, int *params)

target = SHARED TEXTURE PALETTE EXT �

ColorTableEXT(enum target, enum internalformat, sizei width, enum format,

enum type, const void *data)

target = SHARED TEXTURE PALETTE EXT �
ColorSubTableEXT(enum target, sizei start, sizei count, enum format, enum

type, const void *data)

target = SHARED TEXTURE PALETTE EXT �
GetColorTableEXT(enum target, enum format, enum type, void *data)

target = SHARED TEXTURE PALETTE EXT �
GetColorTableParameterivEXT(enum target, enum pname, int *params)

target = SHARED TEXTURE PALETTE EXT �

n The EXT shared texture palette extension is useful to update palettes shared between mul-
tiple textures. This feature is optional, as it is only used by specific (mapping) applications. q

Chapter 8

Packaging

8.1 Header Files

The header file structure is the same as a full OpenGL distribution, using a single header file: gl.h. An
additional enumerant OES SC VERSION x y, where x and y are the major and minor version numbers as
described in Section 6.1, is included in the header file. These enumerants indicate the versions of profiles
supported at compile-time.

8.2 Libraries

Each profile defines a distinct link-library. The library name includes the profile name as libGLES SC.z

where .z is a platform specific library suffix (i.e., .a, .so, .lib, etc.). The symbols for the platform
specific embedding library are also included in the link-library. Availability of static and dynamic function
bindings is platform dependent. Rules regarding the export of bindings for core additions, required profile
extensions, and optional platform extensions are described in Chapter 7.

47

Appendix A

Acknowledgements

The OpenGL ES Safety Critical profile is the result of the contributions of many people, representing a
cross section of the desktop, hand-held, and embedded computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of their contribution:

Bill Marshall, Alt Software

Bruce Stockwell, Seaweed Systems

Chris Hall, Seaweed Systems

Claude Knaus, Esmertec

John Boal, Alt Software

John Jarvis, Alt Software

Mark Snyder, Quantum3D

Michal Krupa, Barco

Neal Countryman, Seaweed Systems

Neil Trevett, NVIDIA

Pete Daniel, Quantum3D

Steve Viggers, Alt Software

Ville Miettinen, Hybrid Graphics

The acknowledgements extend to the Common profiles working group for creating their specifications
on which this document is based.

48

Appendix B

OES Extension Specifications

B.1 OES single precision

Name
OES_single_precision

Name Strings

GL_OES_single_precision

Contact

David Blythe (blythe ’at’ bluevoid.com)

Status

Ratified by the Khronos BOP, July 23, 2003.
Ratified by the Khronos BOP, Aug 5, 2004.

Version

Last Modifed Date: 28 June 2004
Author Revision : 0.5

Number

293

Dependencies

None
The extension is written against the OpenGL 1.3 Specification.

Overview

This extension adds commands with single-precision floating-point
parameters corresponding to the commands that only variants that
accept double-precision floating-point input. This allows an

49

50 OES Extension Specifications

application to avoid using double-precision floating-point
data types. New commands are added with an ’f’ prefix.

IP Status

None

Issues

* An alternative is to suggest platforms define GLfloat and
GLdouble to be the same type, since it is unlikely that both
single- and double-precision are required at the same time.

Resolved: This might create additional confusion, so it is
better to define new commands.

New Procedures and Functions

void DepthRangefOES(clampf n, clampf f);
void FrustumfOES(float l, float r, float b, float t, float n, float f);
void OrthofOES(float l, float r, float b, float t, float n, float f);

void ClipPlanefOES(enum plane, const float* equation);
void GetClipPlanefOES(enum plane, float* equation);

void void glClearDepthfOES(clampd depth);

New Tokens

None

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

Section 2.10 Coordinate Transformations

Revise to include ’f’ suffix.
Add alternate suffixed versions of DepthRange (2.10.1).
Add alternate suffixed versions of Ortho and Frustum (2.10.2).

Section 2.11 Clipping

Add alternate suffixed version of ClipPlane.

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

Section 4.2.3 Clearing the Buffers

OES Extension Specifications 51

Add alternate suffixed version of ClearDepth.

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

None

Additions to the WGL Specification

None

Additions to the AGL Specification

None

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

The data representation is client-side only. The GLX layer
performs translation between float and double representations.

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and Errors)

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the X
Byte Stream)

Additions to Chapter 5 of the GLX 1.3 Specification (Extending OpenGL)

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

GLX Protocol

Five new GL rendering commands are added. The following commands
are sent to the server as part of a glXRender request:

ClearDepthfOES
2 8 rendering command length
2 4308 rendering command opcode
4 FLOAT32 z

52 OES Extension Specifications

DepthRangefOES
2 12 rendering command length
2 4309 rendering command opcode
4 FLOAT32 n
4 FLOAT32 f

FrustumfOES
2 28 rendering command length
2 4310 rendering command opcode
4 FLOAT32 l
4 FLOAT32 r
4 FLOAT32 b
4 FLOAT32 t
4 FLOAT32 n
4 FLOAT32 f

OrthofOES
2 28 rendering command length
2 4311 rendering command opcode
4 FLOAT32 l
4 FLOAT32 r
4 FLOAT32 b
4 FLOAT32 t
4 FLOAT32 n
4 FLOAT32 f

ClipPlanefOES
2 24 rendering command length
2 4312 rendering command opcode
4 ENUM plane
4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]
4 FLOAT32 v[3]

The remaining commands are non-rendering commands. These commands are
sent separately (i.e., not as part of a glXRender or glXRenderLarge
request), using the glXVendorPrivateWithReply request:

GetClipPlanefOES
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 1421 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM plane

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 0 reply length

OES Extension Specifications 53

4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]
4 FLOAT32 v[3]
8 unused

Errors

None

New State

None

New Implementation Dependent State

None

Revision History

03/27/2003 0.1
- First draft created.

07/08/2003 0.2
- Delete unused Dependencies on section
- Added extension number

07/09/2003 0.3
- Added missing ClearDepthfOES
- Removed ’_’s from names.

07/22/2003 0.4
- Added GLX protocol (Thomas Roell)

06/28/2004 0.5
- Added ClipPlanef function (Aaftab Munshi)

54 OES Extension Specifications

B.2 EXT paletted texture

Name

EXT_paletted_texture

Name Strings

GL_EXT_paletted_texture

Contact

Mark J. Kilgard, NVIDIA Corporation (mjk ’at’ nvidia.com)

Version

Last Modified Date: March 24, 2004
Revision: 1.4

Number

78

Support

Intel 810/815.

Mesa.

Microsoft software OpenGL implementation.

Selected NVIDIA GPUs: NV1x (GeForce 256, GeForce2, GeForce4 MX,
GeForce4 Go, Quadro, Quadro2), NV2x (GeForce3, GeForce4 Ti,
Quadro DCC, Quadro4 XGL), and NV3x (GeForce FX 5xxxx, Quadro FX
1000/2000/3000). NV3 (Riva 128) and NV4 (TNT, TNT2) GPUs and NV4x
GPUs do NOT support this functionality (no hardware support).
Future NVIDIA GPU designs will no longer support paletted textures.

S3 ProSavage, Savage 2000.

3Dfx Voodoo3, Voodoo5.

3Dlabs GLINT.

Dependencies

GL_EXT_paletted_texture shares routines and enumerants with
GL_SGI_color_table with the minor modification that EXT replaces SGI.
In all other ways these calls should function in the same manner and the
enumerant values should be identical. The portions of
GL_SGI_color_table that are used are:

ColorTableSGI, GetColorTableSGI, GetColorTableParameterivSGI,

OES Extension Specifications 55

GetColorTableParameterfvSGI.
COLOR_TABLE_FORMAT_SGI, COLOR_TABLE_WIDTH_SGI,
COLOR_TABLE_RED_SIZE_SGI, COLOR_TABLE_GREEN_SIZE_SGI,
COLOR_TABLE_BLUE_SIZE_SGI, COLOR_TABLE_ALPHA_SIZE_SGI,
COLOR_TABLE_LUMINANCE_SIZE_SGI, COLOR_TABLE_INTENSITY_SIZE_SGI.

Portions of GL_SGI_color_table which are not used in
GL_EXT_paletted_texture are:

CopyColorTableSGI, ColorTableParameterivSGI,
ColorTableParameterfvSGI.
COLOR_TABLE_SGI, POST_CONVOLUTION_COLOR_TABLE_SGI,
POST_COLOR_MATRIX_COLOR_TABLE_SGI, PROXY_COLOR_TABLE_SGI,
PROXY_POST_CONVOLUTION_COLOR_TABLE_SGI,
PROXY_POST_COLOR_MATRIX_COLOR_TABLE_SGI, COLOR_TABLE_SCALE_SGI,
COLOR_TABLE_BIAS_SGI.

EXT_paletted_texture can be used in conjunction with EXT_texture3D.
EXT_paletted_texture modifies TexImage3DEXT to accept paletted image
data and allows TEXTURE_3D_EXT and PROXY_TEXTURE_3D_EXT to be used a
targets in the color table routines. If EXT_texture3D is unsupported
then references to 3D texture support in this spec are invalid and
should be ignored.

EXT_paletted_texture can be used in conjunction with
ARB_texture_cube_map. EXT_paletted_texture modifies TexImage2D
to accept paletted image data and allows TEXTURE_CUBE_MAP_ARB, and
PROXY_TEXTURE_CUBE_MAP_ARB to be used a targets in the color table
routines. If ARB_texture_cube_map is unsupported then references
to cube map texture support in this spec are invalid and should be
ignored.

Overview

EXT_paletted_texture defines new texture formats and new calls to
support the use of paletted textures in OpenGL. A paletted texture is
defined by giving both a palette of colors and a set of image data which
is composed of indices into the palette. The paletted texture cannot
function properly without both pieces of information so it increases the
work required to define a texture. This is offset by the fact that the
overall amount of texture data can be reduced dramatically by factoring
redundant information out of the logical view of the texture and placing
it in the palette.

Paletted textures provide several advantages over full-color textures:

* As mentioned above, the amount of data required to define a
texture can be greatly reduced over what would be needed for full-color
specification. For example, consider a source texture that has only 256
distinct colors in a 256 by 256 pixel grid. Full-color representation
requires three bytes per pixel, taking 192K of texture data. By putting
the distinct colors in a palette only eight bits are required per pixel,
reducing the 192K to 64K plus 768 bytes for the palette. Now add an

56 OES Extension Specifications

alpha channel to the texture. The full-color representation increases
by 64K while the paletted version would only increase by 256 bytes.
This reduction in space required is particularly important for hardware
accelerators where texture space is limited.

* Paletted textures allow easy reuse of texture data for images
which require many similar but slightly different colored objects.
Consider a driving simulation with heavy traffic on the road. Many of
the cars will be similar but with different color schemes. If
full-color textures are used a separate texture would be needed for each
color scheme, while paletted textures allow the same basic index data to
be reused for each car, with a different palette to change the final
colors.

* Paletted textures also allow use of all the palette tricks
developed for paletted displays. Simple animation can be done, along
with strobing, glowing and other palette-cycling effects. All of these
techniques can enhance the visual richness of a scene with very little
data.

IP Status

None.

New Procedures and Functions

void ColorTableEXT(
enum target,
enum internalFormat,
sizei width,
enum format,
enum type,
const void *data);

void ColorSubTableEXT(
enum target,
sizei start,
sizei count,
enum format,
enum type,
const void *data);

void GetColorTableEXT(
enum target,
enum format,
enum type,
void *data);

void GetColorTableParameterivEXT(
enum target,
enum pname,
int *params);

OES Extension Specifications 57

void GetColorTableParameterfvEXT(
enum target,
enum pname,
float *params);

New Tokens

Accepted by the internalformat parameter of TexImage1D, TexImage2D and
TexImage3DEXT:

COLOR_INDEX1_EXT 0x80E2
COLOR_INDEX2_EXT 0x80E3
COLOR_INDEX4_EXT 0x80E4
COLOR_INDEX8_EXT 0x80E5
COLOR_INDEX12_EXT 0x80E6
COLOR_INDEX16_EXT 0x80E7

Accepted by the pname parameter of GetColorTableParameterivEXT and
GetColorTableParameterfvEXT:

COLOR_TABLE_FORMAT_EXT 0x80D8
COLOR_TABLE_WIDTH_EXT 0x80D9
COLOR_TABLE_RED_SIZE_EXT 0x80DA
COLOR_TABLE_GREEN_SIZE_EXT 0x80DB
COLOR_TABLE_BLUE_SIZE_EXT 0x80DC
COLOR_TABLE_ALPHA_SIZE_EXT 0x80DD
COLOR_TABLE_LUMINANCE_SIZE_EXT 0x80DE
COLOR_TABLE_INTENSITY_SIZE_EXT 0x80DF

Accepted by the value parameter of GetTexLevelParameter{if}v:
TEXTURE_INDEX_SIZE_EXT 0x80ED

Accepted by the target parameter of ColorTableEXT,
GetColorTableParameterivEXT, and GetColorTableParameterfvEXT:

TEXTURE_1D 0x0DE0
TEXTURE_2D 0x0DE1
TEXTURE_3D_EXT 0x806F
TEXTURE_CUBE_MAP_ARB 0x8513
PROXY_TEXTURE_1D 0x8063
PROXY_TEXTURE_2D 0x8064
PROXY_TEXTURE_3D_EXT 0x8070
PROXY_TEXTURE_CUBE_MAP_ARB 0x851B

Accepted by the target parameter of ColorSubTableEXT and
GetColorTableEXT:

TEXTURE_1D 0x0DE0
TEXTURE_2D 0x0DE1
TEXTURE_3D_EXT 0x806F
TEXTURE_CUBE_MAP_ARB 0x8513

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

58 OES Extension Specifications

Additions to Chapter 3 of the GL Specification (Rasterization)

Section 3.6.4, ’Pixel Transfer Operations,’ subsection ’Color Index
Lookup,’

Point two is modified from ’The groups will be loaded as an
image into texture memory’ to ’The groups will be loaded as an image
into texture memory and the internalformat parameter is not one of the
color index formats from table 3.8.’

Section 3.8, ’Texturing,’ subsection ’Texture Image Specification’ is
modified as follows:

The portion of the first paragraph discussing interpretation of format,
type and data is split from the portion discussing target, width and
height. The target, width and height section now ends with the sentence
’Arguments width and height specify the image’s width and height.’

The format, type and data section is moved under a subheader ’Direct
Color Texture Formats’ and begins with ’If internalformat is not one of
the color index formats from table 3.8,’ and continues with the existing
text through the internalformat discussion.

After that section, a new section ’Paletted Texture Formats’ has the
text:

If format is given as COLOR_INDEX then the image data is
composed of integer values representing indices into a table of colors
rather than colors themselves. If internalformat is given as one of the
color index formats from table 3.8 then the texture will be stored
internally as indices rather than undergoing index-to-RGBA mapping as
would previously have occurred. In this case the only valid values for
type are BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT and
UNSIGNED_INT.

The image data is unpacked from memory exactly as for a
DrawPixels command with format of COLOR_INDEX for a context in color
index mode. The data is then stored in an internal format derived from
internalformat. In this case the only legal values of internalformat
are COLOR_INDEX1_EXT, COLOR_INDEX2_EXT, COLOR_INDEX4_EXT,
COLOR_INDEX8_EXT, COLOR_INDEX12_EXT and COLOR_INDEX16_EXT and the
internal component resolution is picked according to the index
resolution specified by internalformat. Any excess precision in the
data is silently truncated to fit in the internal component precision.

An application can determine whether a particular
implementation supports a particular paletted format (or any paletted
formats at all) by attempting to use the paletted format with a proxy
target. TEXTURE_INDEX_SIZE_EXT will be zero if the implementation
cannot support the texture as given.

An application can determine an implementation’s desired

OES Extension Specifications 59

format for a particular paletted texture by making a TexImage call with
COLOR_INDEX as the internalformat, in which case target must be a proxy
target. After the call the application can query
TEXTURE_INTERNAL_FORMAT to determine what internal format the
implementation suggests for the texture image parameters.
TEXTURE_INDEX_SIZE_EXT can be queried after such a call to determine the
suggested index resolution numerically. The index resolution suggested
by the implementation does not have to be as large as the input data
precision. The resolution may also be zero if the implementation is
unable to support any paletted format for the given texture image.

Table 3.8 should be augmented with a column titled ’Index bits.’ All
existing formats have zero index bits. The following formats are added
with zeroes in all existing columns:

Name Index bits
COLOR_INDEX1_EXT 1
COLOR_INDEX2_EXT 2
COLOR_INDEX4_EXT 4
COLOR_INDEX8_EXT 8
COLOR_INDEX12_EXT 12
COLOR_INDEX16_EXT 16

At the end of the discussion of level the following text should be
added:

All mipmapping levels share the same palette. If levels
are created with different precision indices then their internal formats
will not match and the texture will be inconsistent, as discussed above.

In the discussion of internalformat for CopyTexImage{12}D, at end of the
sentence specifying that 1, 2, 3 and 4 are illegal there should also be
a mention that paletted internalformat values are illegal.

At the end of the width, height, format, type and data section under
TexSubImage there should be an additional sentence:

If the target texture has an color index internal format
then format may only be COLOR_INDEX.

At the end of the first paragraph describing TexSubImage and
CopyTexSubImage the following sentence should be added:

If the target of a CopyTexSubImage is a paletted texture
image then INVALID_OPERATION is returned.

After the Alternate Image Specification Commands section, a new ’Palette
Specification Commands’ section should be added.

Paletted textures require palette information to
translate indices into full colors. The command

void ColorTableEXT(enum target, enum internalformat, sizei width,
enum format, enum type, const void *data);

60 OES Extension Specifications

is used to specify the format and size of the palette for paletted
textures. target specifies which texture is to have its palette
changed and may be one of TEXTURE_1D, TEXTURE_2D, PROXY_TEXTURE_1D,
PROXY_TEXTURE_2D, TEXTURE_3D_EXT, PROXY_TEXTURE_3D_EXT,
TEXTURE_CUBE_MAP_ARB, or PROXY_TEXTURE_CUBE_MAP_ARB. internalformat
specifies the desired format and resolution of the palette when
in its internal form. internalformat can be any of the non-index
values legal for TexImage internalformat although implementations
are not required to support palettes of all possible formats.
width controls the size of the palette and must be a power of two
greater than or equal to one. format and type specify the number
of components and type of the data given by data. format can be
any of the formats legal for DrawPixels although implementations
are not required to support all possible formats. type can be
any of the types legal for DrawPixels except GL_BITMAP.

Data is taken from memory and converted just as if each
palette entry were a single pixel of a 1D texture. Pixel unpacking and
transfer modes apply just as with texture data. After unpacking and
conversion the data is translated into a internal format that matches
the given format as closely as possible. An implementation does not,
however, have a responsibility to support more than one precision for
the base formats.

If the palette’s width is greater than the range of
the color indices in the texture data then some of the palettes entries
will be unused. If the palette’s width is less than the range of the
color indices in the texture data then the most-significant bits of the
texture data are ignored and only the appropriate number of bits of the
index are used when accessing the palette.

Specifying a proxy target causes the proxy texture’s
palette to be resized and its parameters set but no data is transferred
or accessed. If an implementation cannot handle the palette data given
in the call then the color table width and component resolutions are set
to zero.

Portions of the current palette can be replaced with
void ColorSubTableEXT(enum target, sizei start, sizei count,

enum format, enum type, const void *data);
target can be any of the non-proxy values legal for
ColorTableEXT. start and count control which entries of the palette are
changed out of the range allowed by the internal format used for the
palette indices. count is silently clamped so that all modified entries
all within the legal range. format and type can be any of the values
legal for ColorTableEXT. The data is treated as a 1D texture just as in
ColorTableEXT.

In the ’Texture State and Proxy State’ section the sentence fragment
beginning ’six integer values describing the resolutions...’ should be
changed to refer to seven integer values, with the seventh being the
index resolution.

OES Extension Specifications 61

Palette data should be added in as a third category of texture state.

After the discussion of properties, the following should be added:

Next there is the texture palette. All textures have a
palette, even if their internal format is not color index. A texture’s
palette is initially one RGBA element with all four components set to
1.0.

The sentence mentioning that proxies do not have image data or
properties should be extended with ’or palettes.’

The sentence beginning ’If the texture array is too large’ describing
the effects of proxy failure should change to read:

If the implementation is unable to handle the texture
image data the proxy width, height, border width and component
resolutions are set to zero. This situation can occur when the texture
array is too large or an unsupported paletted format was requested.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

Section 5.4, ’Display Lists’ is modified as follows:

Include PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D,
and PROXY_TEXTURE_CUBE_MAP_ARB in the list of tokens for which
ColorTableEXT is executed immediately.

Additions to Chapter 6 of the GL Specification (State and State
Requests)

In the section on GetTexImage, the sentence saying ’The components are
assigned among R, G, B and A according to’ should be changed to be

If the internal format of the texture is not a color
index format then the components are assigned among R, G, B, and A
according to Table 6.1. Specifying COLOR_INDEX for format in this case
will generate the error INVALID_ENUM. If the internal format of the
texture is color index then the components are handled in one of two
ways depending on the value of format. If format is not COLOR_INDEX,
the texture’s indices are passed through the texture’s palette and the
resulting components are assigned among R, G, B, and A according to
Table 6.1. If format is COLOR_INDEX then the data is treated as single
components and the palette indices are returned. Components are taken
starting...

62 OES Extension Specifications

Following the GetTexImage section there should be a new section:

GetColorTableEXT is used to get the current texture
palette.

void GetColorTableEXT(enum target, enum format, enum type, void *data);

GetColorTableEXT retrieves the texture palette of the
texture given by target. target can be any of the non-proxy targets
valid for ColorTableEXT. format and type are interpreted just as for
ColorTableEXT. All textures have a palette by default so
GetColorTableEXT will always be able to return data even if the internal
format of the texture is not a color index format.

Palette parameters can be retrieved using
void GetColorTableParameterivEXT(enum target, enum pname, int *params);
void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

target specifies the texture being queried and pname
controls which parameter value is returned. Data is returned in the
memory pointed to by params.

Querying COLOR_TABLE_FORMAT_EXT returns the internal
format requested by the most recent ColorTableEXT call or the default.
COLOR_TABLE_WIDTH_EXT returns the width of the current palette.
COLOR_TABLE_RED_SIZE_EXT, COLOR_TABLE_GREEN_SIZE_EXT,
COLOR_TABLE_BLUE_SIZE_EXT and COLOR_TABLE_ALPHA_SIZE_EXT return the
actual size of the components used to store the palette data internally,
not the size requested when the palette was defined.

Table 6.11, "Texture Objects" should have a line appended for
TEXTURE_INDEX_SIZE_EXT:

TEXTURE_INDEX_SIZE_EXT n x Z+ GetTexLevelParameter 0 xD
texture image i’s index resolution 3.8 -

New State

In table 6.16, Texture Objects, p. 224, add the following:

Get Value Type Get Command Initial Value
---------------------- -------- --------------------------- -------------
TEXTURE_1D I GetColorTableEXT empty
TEXTURE_2D I GetColorTableEXT empty
TEXTURE_3D I GetColorTableEXT empty
TEXTURE_CUBE_MAP I GetColorTableEXT empty
COLOR_TABLE_FORMAT_EXT 2x4xZn GetColorTableParameterivEXT RGBA
COLOR_TABLE_WIDTH_EXT 2x4xZ+ GetColorTableParameteriv 0
COLOR_TABLE_x_SIZE_EXT 6x2x4xZ+ GetColorTableParameteriv 0
TEXTURE_INDEX_SIZE_EXT nxZ+ GetTexLevelParameter 0

OES Extension Specifications 63

Get Value Description Sec. Attribute
---------------------- ---------------- ----- ---------
TEXTURE_1D 1D palette 3.8 -
TEXTURE_2D 2D palette 3.8 -
TEXTURE_3D 3D palette 3.8 -
TEXTURE_CUBE_MAP cube map palette 3.8 -
COLOR_TABLE_FORMAT_EXT paletted texture formats 3.8 -
COLOR_TABLE_WIDTH_EXT paletted texture width 3.8 -
COLOR_TABLE_x_SIZE_EXT paletted texture component sizes 3.8 -
TEXTURE_INDEX_SIZE_EXT texture image’s index resolution 3.8 -

New Implementation Dependent State

None

Revision History

Original draft, revision 0.5, December 20, 1995 (drewb) Created

Minor revisions and clarifications, revision 0.6, January 2, 1996 (drewb)
Replaced all request-for-comment blocks with final text
based on implementation.

Minor revisions and clarifications, revision 0.7, Feburary 5, 1996 (drewb)
Specified the state of the palette color information
when existing data is replaced by new data.

Clarified behavior of TexPalette on inconsistent textures.

Major changes due to ARB review, revision 0.8, March 1, 1996 (drewb)
Switched from using TexPaletteEXT and GetTexPaletteEXT
to using SGI’s ColorTableEXT routines. Added ColorSubTableEXT so
equivalent functionality is available.

Allowed proxies in all targets.

Changed PALETTE?_EXT values to COLOR_INDEX?_EXT. Added
support for one and two bit palettes. Removed PALETTE_INDEX_EXT in
favor of COLOR_INDEX.

Decoupled palette size from texture data type. Palette
size is controlled only by ColorTableEXT.

Changes due to ARB review, revision 1.0, May 23, 1997 (drewb)
Mentioned texture3D.

Defined TEXTURE_INDEX_SIZE_EXT.

Allowed implementations to return an index size of zero to indicate
no support for a particular format.

Allowed usage of GL_COLOR_INDEX as a generic format in

64 OES Extension Specifications

proxy queries for determining an optimal index size for a particular
texture.

Disallowed CopyTexImage and CopyTexSubImage to paletted
formats.

Deleted mention of index transfer operations during GetTexImage with
paletted formats.

Changes due to ARB_texture_cube_map, revision 1.1, June 27, 2002 (Mark Kilgard)
Add language to section 5.4 about proxy texture tokens for ColorTable
executing immediately.

Document ARB_texture_cube_map interactions.

Document texture target usage for ColorTable API.

Add "New State" section with table and "New Implementation Dependent
State" sections.

Changes when incorporating into the registry, September 4, 2002 (Jon Leech)
Added missing IP Status / Contact fields (without bumping the
revision) and incorporated Mark’s changes into the registry.

Changes, revision 1.4, March 24, 2004 (Mark Kilgard)
Document vendor support for this extension; note that future NVIDIA
GPU designs will not support this extension.

OES Extension Specifications 65

B.3 EXT shared texture palette

Name

EXT_shared_texture_palette

Name Strings

GL_EXT_shared_texture_palette

Contact

Jon Leech, SGI (ljp ’at’ sgi.com)
Mark J. Kilgard, NVIDIA Corporation (mjk ’at’ nvidia.com)

Version

Last Modified Date: March 24, 2004
Revision: 1.4

Number

141

Support

Mesa.

Selected NVIDIA GPUs: NV1x (GeForce 256, GeForce2, GeForce4 MX,
GeForce4 Go, Quadro, Quadro2), NV2x (GeForce3, GeForce4 Ti,
Quadro DCC, Quadro4 XGL), and NV3x (GeForce FX 5xxxx, Quadro FX
1000/2000/3000). NV3 (Riva 128) and NV4 (TNT, TNT2) GPUs and NV4x
GPUs do NOT support this functionality (no hardware support).
Future NVIDIA GPU designs will no longer support paletted textures.

S3 ProSavage, Savage 2000.

3Dfx Voodoo3, Voodoo5.

3Dlabs GLINT.

Dependencies

EXT_paletted_texture is required.

Overview

EXT_shared_texture_palette defines a shared texture palette which may be
used in place of the texture object palettes provided by
EXT_paletted_texture. This is useful for rapidly changing a palette
common to many textures, rather than having to reload the new palette
for each texture. The extension acts as a switch, causing all lookups

66 OES Extension Specifications

that would normally be done on the texture’s palette to instead use the
shared palette.

IP Status

None.

Issues

* Do we want to use a new <target> to ColorTable to specify the
shared palette, or can we just infer the new target from the
corresponding Enable?

* A future extension of larger scope might define a "texture palette
object" and bind these objects to texture objects dynamically, rather
than making palettes part of the texture object state as the current
EXT_paletted_texture spec does.

* Should there be separate shared palettes for 1D, 2D, and 3D
textures?

Probably not; palette lookups have nothing to do with the
dimensionality of the texture. If multiple shared palettes
are needed, we should define palette objects.

* There’s no proxy mechanism for checking if a shared palette can
be defined with the requested parameters. Will it suffice to
assume that if a texture palette can be defined, so can a shared
palette with the same parameters?

* The changes to the spec are based on changes already made for
EXT_paletted_texture, which means that all three documents must
be referred to. This is quite difficult to read.

* The changes to section 3.8.6, defining how shared palettes are
enabled and disabled, might be better placed in section 3.8.1.
However, the underlying EXT_paletted_texture does not appear to
modify these sections to define exactly how palette lookups are
done, and it’s not clear where to put the changes.

* How does the shared texture palette interact with multitexture
support? There is a single global shared texture palette that
all texture units utilize (as opposed to a shared texture palette
per texture unit).

New Procedures and Functions

None

New Tokens

Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,

OES Extension Specifications 67

GetFloatv, GetDoublev, IsEnabled, Enable, Disable, ColorTableEXT,
ColorSubTableEXT, GetColorTableEXT, GetColorTableParameterivEXT, and
GetColorTableParameterfd EXT:

SHARED_TEXTURE_PALETTE_EXT 0x81FB

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

Section 3.8, ’Texturing,’ subsection ’Texture Image Specification’ is
modified as follows:

In the Palette Specification Commands section, the sentence
beginning ’target specifies which texture is to’ should be changed
to:

target specifies the texture palette or shared palette to be
changed, and may be one of TEXTURE_1D, TEXTURE_2D,
PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT,
PROXY_TEXTURE_3D_EXT, or SHARED_TEXTURE_PALETTE_EXT.

In the ’Texture State and Proxy State’ section, the sentence
beginning ’A texture’s palette is initially...’ should be changed
to:

There is also a shared palette not associated with any texture,
which may override a texture palette. (Even when multiple texture
units are available, there is still only a single shared texture
palette.) All palettes are initially...

Section 3.8.6, ’Texture Application’ is modified by appending the
following:

Use of the shared texture palette is enabled or disabled using the
generic Enable or Disable commands, respectively, with the symbolic
constant SHARED_TEXTURE_PALETTE_EXT.

The required state is one bit indicating whether the shared palette is
enabled or disabled. In the initial state, the shared palettes is
disabled.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Frame buffer)

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

In the section on GetTexImage, the sentence beginning ’If format is

68 OES Extension Specifications

not COLOR_INDEX...’ should be changed to:

If format is not COLOR_INDEX, the texture’s indices are passed
through the texture’s palette, or the shared palette if one is
enabled, and the resulting components are assigned among R, G, B,
and A according to Table 6.1.

In the GetColorTable section, the first sentence of the second
paragraph should be changed to read:

GetColorTableEXT retrieves the texture palette or shared palette
given by target.

The first sentence of the third paragraph should be changed to read:

Palette parameters can be retrieved using
void GetColorTableParameterivEXT(enum target, enum pname, int *params);
void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

target specifies the texture palette or shared palette being
queried and pname controls which parameter value is returned.

Additions to the GLX Specification

None

New State

Get Value Type Get Command Initial Value
-------------------------- ---- --------------------------- -------------
SHARED_TEXTURE_PALETTE_EXT B IsEnabled False
SHARED_TEXTURE_PALETTE_EXT I GetColorTableEXT empty
COLOR_TABLE_FORMAT_EXT Zn GetColorTableParameterivEXT RGBA
COLOR_TABLE_WIDTH_EXT Z+ GetColorTableParameteriv 0
COLOR_TABLE_x_SIZE_EXT 6xZ+ GetColorTableParameteriv 0

Get Value Type Description Sec Attribute
-------------------------- ---- -------------- ----- --------------
SHARED_TEXTURE_PALETTE_EXT B shared texture 3.8.6 texture/enable

palette enable
SHARED_TEXTURE_PALETTE_EXT I shared texture 3.8 -

palette table
COLOR_TABLE_FORMAT_EXT Zn shared texture 3.8 -

palette format
COLOR_TABLE_WIDTH_EXT Z+ shared texture 3.8 -

palette width
COLOR_TABLE_x_SIZE_EXT 6xZ+ shared texture 3.8 -

palette
component sizes

New Implementation Dependent State

None

OES Extension Specifications 69

Revision History

September 4, 2002 - Add missing IP Status / Contact fields
(without bumping the revision) and incorporated Mark’s changes
into the registry. (Jon Leech)

July 10, 2002 (version 1.3) - Added "New State" tables entries.
Clarify that there is a single global shared texture palette,
rather than a per-texture unit palette when multitexture is
available. (Mark Kilgard)

March 24, 2004 (version 1.4) - Document vendor support for this
extension; note that future NVIDIA GPU designs will not support this
extension. (Mark Kilgard)

	Overview
	Conventions

	OpenGL Operation
	OpenGL Fundamentals
	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Vertex Specification
	Vertex Arrays
	Rectangles
	Coordinate Transformations
	Clipping
	Current Raster Position
	Colors and Coloring

	Rasterization
	Invariance
	Antialiasing
	Points
	Line Segments
	Polygons
	Pixel Rectangles
	Bitmaps
	Texturing
	Fog

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Whole Framebuffer Operations
	Drawing, Reading, and Copying Pixels

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	State Tables

	Core Additions and Extensions
	Single-precision Commands
	Paletted Textures
	Shared Texture Palette

	Packaging
	Header Files
	Libraries

	Acknowledgements
	OES Extension Specifications
	OES_single_precision
	EXT_paletted_texture
	EXT_shared_texture_palette

