
libbfd
The Binary File Descriptor Library

First Edition—BFD version < 3.0 % Since no product is stable before version 3.0 :-)
Original Document Created: April 1991

Steve Chamberlain
Cygnus Support

Free Software Foundation
sac@www.gnu.org

BFD, 1.5
TEXinfo 2007-06-20.13

Copyright c© 1991-2015 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

1 Introduction . 1
1.1 History . 1
1.2 How To Use BFD . 1
1.3 What BFD Version 2 Can Do . 2

1.3.1 Information Loss . 2
1.3.2 The BFD canonical object-file format . 3

2 BFD Front End . 5
2.1 typedef bfd . 5
2.2 Error reporting . 11

2.2.1 Type bfd_error_type . 11
2.2.1.1 bfd_get_error . 12
2.2.1.2 bfd_set_error . 12
2.2.1.3 bfd_errmsg . 12
2.2.1.4 bfd_perror . 12

2.2.2 BFD error handler . 12
2.2.2.1 bfd_set_error_handler . 13
2.2.2.2 bfd_set_error_program_name . 13
2.2.2.3 bfd_get_error_handler . 13

2.2.3 BFD assert handler . 13
2.2.3.1 bfd_set_assert_handler . 13
2.2.3.2 bfd_get_assert_handler . 13

2.3 Miscellaneous . 14
2.3.1 Miscellaneous functions . 14

2.3.1.1 bfd_get_reloc_upper_bound . 14
2.3.1.2 bfd_canonicalize_reloc . 14
2.3.1.3 bfd_set_reloc . 14
2.3.1.4 bfd_set_file_flags . 14
2.3.1.5 bfd_get_arch_size . 15
2.3.1.6 bfd_get_sign_extend_vma . 15
2.3.1.7 bfd_set_start_address . 15
2.3.1.8 bfd_get_gp_size . 15
2.3.1.9 bfd_set_gp_size . 15
2.3.1.10 bfd_scan_vma . 16
2.3.1.11 bfd_copy_private_header_data 16
2.3.1.12 bfd_copy_private_bfd_data . 16
2.3.1.13 bfd_merge_private_bfd_data . 16
2.3.1.14 bfd_set_private_flags . 17
2.3.1.15 Other functions . 17
2.3.1.16 bfd_alt_mach_code . 19
2.3.1.17 bfd_emul_get_maxpagesize . 19
2.3.1.18 bfd_emul_set_maxpagesize . 19
2.3.1.19 bfd_emul_get_commonpagesize . 19

ii

2.3.1.20 bfd_emul_set_commonpagesize . 20
2.3.1.21 bfd_demangle . 20
2.3.1.22 struct bfd_iovec . 20
2.3.1.23 bfd_get_mtime . 21
2.3.1.24 bfd_get_size . 21
2.3.1.25 bfd_mmap . 21

2.4 Memory Usage . 22
2.5 Initialization . 22

2.5.1 Initialization functions . 22
2.5.1.1 bfd_init . 22

2.6 Sections . 22
2.6.1 Section input . 22
2.6.2 Section output . 23
2.6.3 Link orders . 23
2.6.4 typedef asection . 23
2.6.5 Section prototypes . 36

2.6.5.1 bfd_section_list_clear . 36
2.6.5.2 bfd_get_section_by_name . 36
2.6.5.3 bfd_get_next_section_by_name . 36
2.6.5.4 bfd_get_linker_section . 36
2.6.5.5 bfd_get_section_by_name_if . 37
2.6.5.6 bfd_get_unique_section_name . 37
2.6.5.7 bfd_make_section_old_way . 37
2.6.5.8 bfd_make_section_anyway_with_flags 37
2.6.5.9 bfd_make_section_anyway . 38
2.6.5.10 bfd_make_section_with_flags . 38
2.6.5.11 bfd_make_section . 38
2.6.5.12 bfd_set_section_flags . 38
2.6.5.13 bfd_rename_section . 39
2.6.5.14 bfd_map_over_sections . 39
2.6.5.15 bfd_sections_find_if . 39
2.6.5.16 bfd_set_section_size . 39
2.6.5.17 bfd_set_section_contents . 40
2.6.5.18 bfd_get_section_contents . 40
2.6.5.19 bfd_malloc_and_get_section . 40
2.6.5.20 bfd_copy_private_section_data 40
2.6.5.21 bfd_generic_is_group_section 41
2.6.5.22 bfd_generic_discard_group . 41

2.7 Symbols . 41
2.7.1 Reading symbols . 41
2.7.2 Writing symbols . 42
2.7.3 Mini Symbols . 43
2.7.4 typedef asymbol . 43
2.7.5 Symbol handling functions . 46

2.7.5.1 bfd_get_symtab_upper_bound . 46
2.7.5.2 bfd_is_local_label . 46
2.7.5.3 bfd_is_local_label_name . 46
2.7.5.4 bfd_is_target_special_symbol . 47

iii

2.7.5.5 bfd_canonicalize_symtab . 47
2.7.5.6 bfd_set_symtab . 47
2.7.5.7 bfd_print_symbol_vandf . 47
2.7.5.8 bfd_make_empty_symbol . 48
2.7.5.9 _bfd_generic_make_empty_symbol 48
2.7.5.10 bfd_make_debug_symbol . 48
2.7.5.11 bfd_decode_symclass . 48
2.7.5.12 bfd_is_undefined_symclass . 48
2.7.5.13 bfd_symbol_info . 48
2.7.5.14 bfd_copy_private_symbol_data 49

2.8 Archives . 49
2.8.1 Archive functions . 50

2.8.1.1 bfd_get_next_mapent . 50
2.8.1.2 bfd_set_archive_head . 50
2.8.1.3 bfd_openr_next_archived_file . 50

2.9 File formats . 50
2.9.1 File format functions . 51

2.9.1.1 bfd_check_format . 51
2.9.1.2 bfd_check_format_matches . 51
2.9.1.3 bfd_set_format . 51
2.9.1.4 bfd_format_string . 52

2.10 Relocations . 52
2.10.1 typedef arelent . 52

2.10.1.1 enum complain_overflow . 55
2.10.1.2 reloc_howto_type . 55
2.10.1.3 The HOWTO Macro . 57
2.10.1.4 bfd_get_reloc_size . 58
2.10.1.5 arelent_chain . 58
2.10.1.6 bfd_check_overflow . 59
2.10.1.7 bfd_perform_relocation . 59
2.10.1.8 bfd_install_relocation . 59

2.10.2 The howto manager . 60
2.10.2.1 bfd_reloc_code_type . 60
2.10.2.2 bfd_reloc_type_lookup . 128
2.10.2.3 bfd_default_reloc_type_lookup 128
2.10.2.4 bfd_get_reloc_code_name . 128
2.10.2.5 bfd_generic_relax_section . 128
2.10.2.6 bfd_generic_gc_sections . 129
2.10.2.7 bfd_generic_lookup_section_flags 129
2.10.2.8 bfd_generic_merge_sections . 129
2.10.2.9 bfd_generic_get_relocated_section_contents

. 129
2.11 Core files . 129

2.11.1 Core file functions . 129
2.11.1.1 bfd_core_file_failing_command 130
2.11.1.2 bfd_core_file_failing_signal 130
2.11.1.3 bfd_core_file_pid . 130
2.11.1.4 core_file_matches_executable_p 130

iv

2.11.1.5 generic_core_file_matches_executable_p 130
2.12 Targets . 131

2.12.1 bfd target . 131
2.12.1.1 bfd_set_default_target . 141
2.12.1.2 bfd_find_target . 141
2.12.1.3 bfd_get_target_info . 141
2.12.1.4 bfd_target_list . 142
2.12.1.5 bfd_seach_for_target . 142

2.13 Architectures . 142
2.13.1 bfd architecture . 142
2.13.2 bfd arch info . 152

2.13.2.1 bfd_printable_name . 153
2.13.2.2 bfd_scan_arch . 153
2.13.2.3 bfd_arch_list . 153
2.13.2.4 bfd_arch_get_compatible . 153
2.13.2.5 bfd_default_arch_struct . 153
2.13.2.6 bfd_set_arch_info . 154
2.13.2.7 bfd_default_set_arch_mach . 154
2.13.2.8 bfd_get_arch . 154
2.13.2.9 bfd_get_mach . 154
2.13.2.10 bfd_arch_bits_per_byte . 154
2.13.2.11 bfd_arch_bits_per_address . 154
2.13.2.12 bfd_default_compatible . 154
2.13.2.13 bfd_default_scan . 155
2.13.2.14 bfd_get_arch_info . 155
2.13.2.15 bfd_lookup_arch . 155
2.13.2.16 bfd_printable_arch_mach . 155
2.13.2.17 bfd_octets_per_byte . 155
2.13.2.18 bfd_arch_mach_octets_per_byte 155
2.13.2.19 bfd_arch_default_fill . 156

2.14 Opening and closing BFDs . 156
2.14.1 Functions for opening and closing . 156

2.14.1.1 bfd_fopen . 156
2.14.1.2 bfd_openr . 156
2.14.1.3 bfd_fdopenr . 157
2.14.1.4 bfd_openstreamr . 157
2.14.1.5 bfd_openr_iovec . 157
2.14.1.6 bfd_openw . 158
2.14.1.7 bfd_close . 158
2.14.1.8 bfd_close_all_done . 159
2.14.1.9 bfd_create . 159
2.14.1.10 bfd_make_writable . 159
2.14.1.11 bfd_make_readable . 159
2.14.1.12 bfd_alloc . 160
2.14.1.13 bfd_alloc2 . 160
2.14.1.14 bfd_zalloc . 160
2.14.1.15 bfd_zalloc2 . 160
2.14.1.16 bfd_calc_gnu_debuglink_crc32 160

v

2.14.1.17 bfd_get_debug_link_info . 160
2.14.1.18 bfd_get_alt_debug_link_info 161
2.14.1.19 separate_debug_file_exists 161
2.14.1.20 separate_alt_debug_file_exists 161
2.14.1.21 find_separate_debug_file . 161
2.14.1.22 bfd_follow_gnu_debuglink . 161
2.14.1.23 bfd_follow_gnu_debugaltlink 162
2.14.1.24 bfd_create_gnu_debuglink_section 162
2.14.1.25 bfd_fill_in_gnu_debuglink_section 162

2.15 Implementation details . 163
2.15.1 Internal functions . 163

2.15.1.1 bfd_write_bigendian_4byte_int 163
2.15.1.2 bfd_put_size . 163
2.15.1.3 bfd_get_size . 163
2.15.1.4 bfd_h_put_size . 164
2.15.1.5 bfd_log2 . 166

2.16 File caching . 166
2.16.1 Caching functions . 166

2.16.1.1 bfd_cache_init . 166
2.16.1.2 bfd_cache_close . 166
2.16.1.3 bfd_cache_close_all . 166
2.16.1.4 bfd_open_file . 167

2.17 Linker Functions . 167
2.17.1 Creating a linker hash table . 167
2.17.2 Adding symbols to the hash table . 168

2.17.2.1 Differing file formats . 168
2.17.2.2 Adding symbols from an object file 168
2.17.2.3 Adding symbols from an archive 169

2.17.3 Performing the final link . 170
2.17.3.1 Information provided by the linker 170
2.17.3.2 Relocating the section contents . 170
2.17.3.3 Writing the symbol table . 171
2.17.3.4 bfd_link_split_section . 171
2.17.3.5 bfd_section_already_linked . 172
2.17.3.6 bfd_generic_define_common_symbol 172
2.17.3.7 bfd_find_version_for_sym . 172
2.17.3.8 bfd_hide_sym_by_version . 172

2.18 Hash Tables . 173
2.18.1 Creating and freeing a hash table . 173
2.18.2 Looking up or entering a string . 173
2.18.3 Traversing a hash table . 174
2.18.4 Deriving a new hash table type . 174

2.18.4.1 Define the derived structures . 174
2.18.4.2 Write the derived creation routine 174
2.18.4.3 Write other derived routines . 175

vi

3 BFD back ends . 177
3.1 What to Put Where . 177
3.2 a.out backends . 177

3.2.1 Relocations . 178
3.2.2 Internal entry points . 178

3.2.2.1 aout_size_swap_exec_header_in 178
3.2.2.2 aout_size_swap_exec_header_out 178
3.2.2.3 aout_size_some_aout_object_p 179
3.2.2.4 aout_size_mkobject . 179
3.2.2.5 aout_size_machine_type . 179
3.2.2.6 aout_size_set_arch_mach . 179
3.2.2.7 aout_size_new_section_hook . 180

3.3 coff backends . 180
3.3.1 Porting to a new version of coff . 180
3.3.2 How the coff backend works . 180

3.3.2.1 File layout . 180
3.3.2.2 Coff long section names . 181
3.3.2.3 Bit twiddling . 182
3.3.2.4 Symbol reading . 182
3.3.2.5 Symbol writing . 183
3.3.2.6 coff_symbol_type . 183
3.3.2.7 bfd_coff_backend_data . 185
3.3.2.8 Writing relocations . 191
3.3.2.9 Reading linenumbers . 191
3.3.2.10 Reading relocations . 192

3.4 ELF backends . 192
3.5 mmo backend . 192

3.5.1 File layout . 192
3.5.2 Symbol table format . 194
3.5.3 mmo section mapping . 196

BFD Index . 206

Chapter 1: Introduction 1

1 Introduction

BFD is a package which allows applications to use the same routines to operate on object
files whatever the object file format. A new object file format can be supported simply by
creating a new BFD back end and adding it to the library.
BFD is split into two parts: the front end, and the back ends (one for each object file
format).
• The front end of BFD provides the interface to the user. It manages memory and

various canonical data structures. The front end also decides which back end to use
and when to call back end routines.

• The back ends provide BFD its view of the real world. Each back end provides a set of
calls which the BFD front end can use to maintain its canonical form. The back ends
also may keep around information for their own use, for greater efficiency.

1.1 History

One spur behind BFD was the desire, on the part of the GNU 960 team at Intel Oregon, for
interoperability of applications on their COFF and b.out file formats. Cygnus was providing
GNU support for the team, and was contracted to provide the required functionality.
The name came from a conversation David Wallace was having with Richard Stallman
about the library: RMS said that it would be quite hard—David said “BFD”. Stallman was
right, but the name stuck.
At the same time, Ready Systems wanted much the same thing, but for different object file
formats: IEEE-695, Oasys, Srecords, a.out and 68k coff.
BFD was first implemented by members of Cygnus Support; Steve Chamber-
lain (sac@cygnus.com), John Gilmore (gnu@cygnus.com), K. Richard Pixley
(rich@cygnus.com) and David Henkel-Wallace (gumby@cygnus.com).

1.2 How To Use BFD

To use the library, include ‘bfd.h’ and link with ‘libbfd.a’.
BFD provides a common interface to the parts of an object file for a calling application.
When an application successfully opens a target file (object, archive, or whatever), a pointer
to an internal structure is returned. This pointer points to a structure called bfd, described
in ‘bfd.h’. Our convention is to call this pointer a BFD, and instances of it within code
abfd. All operations on the target object file are applied as methods to the BFD. The
mapping is defined within bfd.h in a set of macros, all beginning with ‘bfd_’ to reduce
namespace pollution.
For example, this sequence does what you would probably expect: return the number of
sections in an object file attached to a BFD abfd.

#include "bfd.h"

unsigned int number_of_sections (abfd)
bfd *abfd;
{

Chapter 1: Introduction 2

return bfd_count_sections (abfd);
}

The abstraction used within BFD is that an object file has:

• a header,

• a number of sections containing raw data (see Section 2.6 [Sections], page 22),

• a set of relocations (see Section 2.10 [Relocations], page 52), and

• some symbol information (see Section 2.7 [Symbols], page 41).

Also, BFDs opened for archives have the additional attribute of an index and contain
subordinate BFDs. This approach is fine for a.out and coff, but loses efficiency when
applied to formats such as S-records and IEEE-695.

1.3 What BFD Version 2 Can Do

When an object file is opened, BFD subroutines automatically determine the format of the
input object file. They then build a descriptor in memory with pointers to routines that
will be used to access elements of the object file’s data structures.

As different information from the object files is required, BFD reads from different sections
of the file and processes them. For example, a very common operation for the linker is
processing symbol tables. Each BFD back end provides a routine for converting between
the object file’s representation of symbols and an internal canonical format. When the
linker asks for the symbol table of an object file, it calls through a memory pointer to the
routine from the relevant BFD back end which reads and converts the table into a canonical
form. The linker then operates upon the canonical form. When the link is finished and the
linker writes the output file’s symbol table, another BFD back end routine is called to take
the newly created symbol table and convert it into the chosen output format.

1.3.1 Information Loss

Information can be lost during output. The output formats supported by BFD do not
provide identical facilities, and information which can be described in one form has nowhere
to go in another format. One example of this is alignment information in b.out. There is
nowhere in an a.out format file to store alignment information on the contained data, so
when a file is linked from b.out and an a.out image is produced, alignment information
will not propagate to the output file. (The linker will still use the alignment information
internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of
sections, each one with a textual section name. If the target of the link is a format which
does not have many sections (e.g., a.out) or has sections without names (e.g., the Oasys
format), the link cannot be done simply. You can circumvent this problem by describing
the desired input-to-output section mapping with the linker command language.

Information can be lost during canonicalization. The BFD internal canonical form of the
external formats is not exhaustive; there are structures in input formats for which there is
no direct representation internally. This means that the BFD back ends cannot maintain
all possible data richness through the transformation between external to internal and back
to external formats.

Chapter 1: Introduction 3

This limitation is only a problem when an application reads one format and writes another.
Each BFD back end is responsible for maintaining as much data as possible, and the internal
BFD canonical form has structures which are opaque to the BFD core, and exported only
to the back ends. When a file is read in one format, the canonical form is generated for
BFD and the application. At the same time, the back end saves away any information
which may otherwise be lost. If the data is then written back in the same format, the back
end routine will be able to use the canonical form provided by the BFD core as well as the
information it prepared earlier. Since there is a great deal of commonality between back
ends, there is no information lost when linking or copying big endian COFF to little endian
COFF, or a.out to b.out. When a mixture of formats is linked, the information is only
lost from the files whose format differs from the destination.

1.3.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the least overlap between
the information provided by the source format, that stored by the canonical format, and
that needed by the destination format. A brief description of the canonical form may help
you understand which kinds of data you can count on preserving across conversions.

files Information stored on a per-file basis includes target machine architecture, par-
ticular implementation format type, a demand pageable bit, and a write pro-
tected bit. Information like Unix magic numbers is not stored here—only the
magic numbers’ meaning, so a ZMAGIC file would have both the demand page-
able bit and the write protected text bit set. The byte order of the target is
stored on a per-file basis, so that big- and little-endian object files may be used
with one another.

sections Each section in the input file contains the name of the section, the section’s
original address in the object file, size and alignment information, various flags,
and pointers into other BFD data structures.

symbols Each symbol contains a pointer to the information for the object file which
originally defined it, its name, its value, and various flag bits. When a BFD
back end reads in a symbol table, it relocates all symbols to make them relative
to the base of the section where they were defined. Doing this ensures that
each symbol points to its containing section. Each symbol also has a varying
amount of hidden private data for the BFD back end. Since the symbol points
to the original file, the private data format for that symbol is accessible. ld can
operate on a collection of symbols of wildly different formats without problems.
Normal global and simple local symbols are maintained on output, so an output
file (no matter its format) will retain symbols pointing to functions and to
global, static, and common variables. Some symbol information is not worth
retaining; in a.out, type information is stored in the symbol table as long
symbol names. This information would be useless to most COFF debuggers;
the linker has command line switches to allow users to throw it away.
There is one word of type information within the symbol, so if the format
supports symbol type information within symbols (for example, COFF, IEEE,
Oasys) and the type is simple enough to fit within one word (nearly everything
but aggregates), the information will be preserved.

Chapter 1: Introduction 4

relocation level
Each canonical BFD relocation record contains a pointer to the symbol to re-
locate to, the offset of the data to relocate, the section the data is in, and
a pointer to a relocation type descriptor. Relocation is performed by passing
messages through the relocation type descriptor and the symbol pointer. There-
fore, relocations can be performed on output data using a relocation method
that is only available in one of the input formats. For instance, Oasys provides
a byte relocation format. A relocation record requesting this relocation type
would point indirectly to a routine to perform this, so the relocation may be
performed on a byte being written to a 68k COFF file, even though 68k COFF
has no such relocation type.

line numbers
Object formats can contain, for debugging purposes, some form of mapping
between symbols, source line numbers, and addresses in the output file. These
addresses have to be relocated along with the symbol information. Each symbol
with an associated list of line number records points to the first record of the list.
The head of a line number list consists of a pointer to the symbol, which allows
finding out the address of the function whose line number is being described.
The rest of the list is made up of pairs: offsets into the section and line numbers.
Any format which can simply derive this information can pass it successfully
between formats (COFF, IEEE and Oasys).

Chapter 2: BFD Front End 5

2 BFD Front End

2.1 typedef bfd

A BFD has type bfd; objects of this type are the cornerstone of any application using BFD.
Using BFD consists of making references though the BFD and to data in the BFD.
Here is the structure that defines the type bfd. It contains the major data about the file
and pointers to the rest of the data.

enum bfd_direction
{
no_direction = 0,
read_direction = 1,
write_direction = 2,
both_direction = 3

};

struct bfd
{
/* The filename the application opened the BFD with. */
const char *filename;

/* A pointer to the target jump table. */
const struct bfd_target *xvec;

/* The IOSTREAM, and corresponding IO vector that provide access
to the file backing the BFD. */

void *iostream;
const struct bfd_iovec *iovec;

/* The caching routines use these to maintain a
least-recently-used list of BFDs. */

struct bfd *lru_prev, *lru_next;

/* When a file is closed by the caching routines, BFD retains
state information on the file here... */

ufile_ptr where;

/* File modified time, if mtime_set is TRUE. */
long mtime;

/* A unique identifier of the BFD */
unsigned int id;

/* The format which belongs to the BFD. (object, core, etc.) */
ENUM_BITFIELD (bfd_format) format : 3;

Chapter 2: BFD Front End 6

/* The direction with which the BFD was opened. */
ENUM_BITFIELD (bfd_direction) direction : 2;

/* Format_specific flags. */
flagword flags : 17;

/* Values that may appear in the flags field of a BFD. These also
appear in the object_flags field of the bfd_target structure, where
they indicate the set of flags used by that backend (not all flags
are meaningful for all object file formats) (FIXME: at the moment,
the object_flags values have mostly just been copied from backend
to another, and are not necessarily correct). */

#define BFD_NO_FLAGS 0x00

/* BFD contains relocation entries. */
#define HAS_RELOC 0x01

/* BFD is directly executable. */
#define EXEC_P 0x02

/* BFD has line number information (basically used for F_LNNO in a
COFF header). */

#define HAS_LINENO 0x04

/* BFD has debugging information. */
#define HAS_DEBUG 0x08

/* BFD has symbols. */
#define HAS_SYMS 0x10

/* BFD has local symbols (basically used for F_LSYMS in a COFF
header). */

#define HAS_LOCALS 0x20

/* BFD is a dynamic object. */
#define DYNAMIC 0x40

/* Text section is write protected (if D_PAGED is not set, this is
like an a.out NMAGIC file) (the linker sets this by default, but
clears it for -r or -N). */

#define WP_TEXT 0x80

/* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the
linker sets this by default, but clears it for -r or -n or -N). */

#define D_PAGED 0x100

Chapter 2: BFD Front End 7

/* BFD is relaxable (this means that bfd_relax_section may be able to
do something) (sometimes bfd_relax_section can do something even if
this is not set). */

#define BFD_IS_RELAXABLE 0x200

/* This may be set before writing out a BFD to request using a
traditional format. For example, this is used to request that when
writing out an a.out object the symbols not be hashed to eliminate
duplicates. */

#define BFD_TRADITIONAL_FORMAT 0x400

/* This flag indicates that the BFD contents are actually cached
in memory. If this is set, iostream points to a bfd_in_memory
struct. */

#define BFD_IN_MEMORY 0x800

/* This BFD has been created by the linker and doesn’t correspond
to any input file. */

#define BFD_LINKER_CREATED 0x1000

/* This may be set before writing out a BFD to request that it
be written using values for UIDs, GIDs, timestamps, etc. that
will be consistent from run to run. */

#define BFD_DETERMINISTIC_OUTPUT 0x2000

/* Compress sections in this BFD. */
#define BFD_COMPRESS 0x4000

/* Decompress sections in this BFD. */
#define BFD_DECOMPRESS 0x8000

/* BFD is a dummy, for plugins. */
#define BFD_PLUGIN 0x10000

/* Flags bits to be saved in bfd_preserve_save. */
#define BFD_FLAGS_SAVED \
(BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_PLUGIN)

/* Flags bits which are for BFD use only. */
#define BFD_FLAGS_FOR_BFD_USE_MASK \
(BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_LINKER_CREATED \
| BFD_PLUGIN | BFD_TRADITIONAL_FORMAT | BFD_DETERMINISTIC_OUTPUT)

/* Is the file descriptor being cached? That is, can it be closed as
needed, and re-opened when accessed later? */

unsigned int cacheable : 1;

Chapter 2: BFD Front End 8

/* Marks whether there was a default target specified when the
BFD was opened. This is used to select which matching algorithm
to use to choose the back end. */

unsigned int target_defaulted : 1;

/* ... and here: (‘‘once’’ means at least once). */
unsigned int opened_once : 1;

/* Set if we have a locally maintained mtime value, rather than
getting it from the file each time. */

unsigned int mtime_set : 1;

/* Flag set if symbols from this BFD should not be exported. */
unsigned int no_export : 1;

/* Remember when output has begun, to stop strange things
from happening. */

unsigned int output_has_begun : 1;

/* Have archive map. */
unsigned int has_armap : 1;

/* Set if this is a thin archive. */
unsigned int is_thin_archive : 1;

/* Set if only required symbols should be added in the link hash table for
this object. Used by VMS linkers. */

unsigned int selective_search : 1;

/* Set if this is the linker output BFD. */
unsigned int is_linker_output : 1;

/* Currently my_archive is tested before adding origin to
anything. I believe that this can become always an add of
origin, with origin set to 0 for non archive files. */

ufile_ptr origin;

/* The origin in the archive of the proxy entry. This will
normally be the same as origin, except for thin archives,
when it will contain the current offset of the proxy in the
thin archive rather than the offset of the bfd in its actual
container. */

ufile_ptr proxy_origin;

/* A hash table for section names. */
struct bfd_hash_table section_htab;

Chapter 2: BFD Front End 9

/* Pointer to linked list of sections. */
struct bfd_section *sections;

/* The last section on the section list. */
struct bfd_section *section_last;

/* The number of sections. */
unsigned int section_count;

/* A field used by _bfd_generic_link_add_archive_symbols. This will
be used only for archive elements. */

int archive_pass;

/* Stuff only useful for object files:
The start address. */

bfd_vma start_address;

/* Symbol table for output BFD (with symcount entries).
Also used by the linker to cache input BFD symbols. */

struct bfd_symbol **outsymbols;

/* Used for input and output. */
unsigned int symcount;

/* Used for slurped dynamic symbol tables. */
unsigned int dynsymcount;

/* Pointer to structure which contains architecture information. */
const struct bfd_arch_info *arch_info;

/* Stuff only useful for archives. */
void *arelt_data;
struct bfd *my_archive; /* The containing archive BFD. */
struct bfd *archive_next; /* The next BFD in the archive. */
struct bfd *archive_head; /* The first BFD in the archive. */
struct bfd *nested_archives; /* List of nested archive in a flattened

thin archive. */

union {
/* For input BFDs, a chain of BFDs involved in a link. */
struct bfd *next;
/* For output BFD, the linker hash table. */
struct bfd_link_hash_table *hash;

} link;

/* Used by the back end to hold private data. */

Chapter 2: BFD Front End 10

union
{

struct aout_data_struct *aout_data;
struct artdata *aout_ar_data;
struct _oasys_data *oasys_obj_data;
struct _oasys_ar_data *oasys_ar_data;
struct coff_tdata *coff_obj_data;
struct pe_tdata *pe_obj_data;
struct xcoff_tdata *xcoff_obj_data;
struct ecoff_tdata *ecoff_obj_data;
struct ieee_data_struct *ieee_data;
struct ieee_ar_data_struct *ieee_ar_data;
struct srec_data_struct *srec_data;
struct verilog_data_struct *verilog_data;
struct ihex_data_struct *ihex_data;
struct tekhex_data_struct *tekhex_data;
struct elf_obj_tdata *elf_obj_data;
struct nlm_obj_tdata *nlm_obj_data;
struct bout_data_struct *bout_data;
struct mmo_data_struct *mmo_data;
struct sun_core_struct *sun_core_data;
struct sco5_core_struct *sco5_core_data;
struct trad_core_struct *trad_core_data;
struct som_data_struct *som_data;
struct hpux_core_struct *hpux_core_data;
struct hppabsd_core_struct *hppabsd_core_data;
struct sgi_core_struct *sgi_core_data;
struct lynx_core_struct *lynx_core_data;
struct osf_core_struct *osf_core_data;
struct cisco_core_struct *cisco_core_data;
struct versados_data_struct *versados_data;
struct netbsd_core_struct *netbsd_core_data;
struct mach_o_data_struct *mach_o_data;
struct mach_o_fat_data_struct *mach_o_fat_data;
struct plugin_data_struct *plugin_data;
struct bfd_pef_data_struct *pef_data;
struct bfd_pef_xlib_data_struct *pef_xlib_data;
struct bfd_sym_data_struct *sym_data;
void *any;

}
tdata;

/* Used by the application to hold private data. */
void *usrdata;

/* Where all the allocated stuff under this BFD goes. This is a
struct objalloc *, but we use void * to avoid requiring the inclusion

Chapter 2: BFD Front End 11

of objalloc.h. */
void *memory;

};

/* See note beside bfd_set_section_userdata. */
static inline bfd_boolean
bfd_set_cacheable (bfd * abfd, bfd_boolean val)
{
abfd->cacheable = val;
return TRUE;

}

2.2 Error reporting

Most BFD functions return nonzero on success (check their individual documentation for
precise semantics). On an error, they call bfd_set_error to set an error condition that
callers can check by calling bfd_get_error. If that returns bfd_error_system_call, then
check errno.
The easiest way to report a BFD error to the user is to use bfd_perror.

2.2.1 Type bfd_error_type

The values returned by bfd_get_error are defined by the enumerated type bfd_error_
type.

typedef enum bfd_error
{
bfd_error_no_error = 0,
bfd_error_system_call,
bfd_error_invalid_target,
bfd_error_wrong_format,
bfd_error_wrong_object_format,
bfd_error_invalid_operation,
bfd_error_no_memory,
bfd_error_no_symbols,
bfd_error_no_armap,
bfd_error_no_more_archived_files,
bfd_error_malformed_archive,
bfd_error_missing_dso,
bfd_error_file_not_recognized,
bfd_error_file_ambiguously_recognized,
bfd_error_no_contents,
bfd_error_nonrepresentable_section,
bfd_error_no_debug_section,
bfd_error_bad_value,
bfd_error_file_truncated,
bfd_error_file_too_big,

Chapter 2: BFD Front End 12

bfd_error_on_input,
bfd_error_invalid_error_code

}
bfd_error_type;

2.2.1.1 bfd_get_error

Synopsis

bfd_error_type bfd_get_error (void);

Description
Return the current BFD error condition.

2.2.1.2 bfd_set_error

Synopsis

void bfd_set_error (bfd_error_type error_tag, ...);

Description
Set the BFD error condition to be error tag. If error tag is bfd error on input, then
this function takes two more parameters, the input bfd where the error occurred, and
the bfd error type error.

2.2.1.3 bfd_errmsg

Synopsis

const char *bfd_errmsg (bfd_error_type error_tag);

Description
Return a string describing the error error tag, or the system error if error tag is bfd_error_
system_call.

2.2.1.4 bfd_perror

Synopsis

void bfd_perror (const char *message);

Description
Print to the standard error stream a string describing the last BFD error that occurred, or
the last system error if the last BFD error was a system call failure. If message is non-NULL
and non-empty, the error string printed is preceded by message, a colon, and a space. It is
followed by a newline.

2.2.2 BFD error handler

Some BFD functions want to print messages describing the problem. They call a BFD error
handler function. This function may be overridden by the program.

The BFD error handler acts like printf.

typedef void (*bfd_error_handler_type) (const char *, ...);

Chapter 2: BFD Front End 13

2.2.2.1 bfd_set_error_handler

Synopsis

bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);

Description
Set the BFD error handler function. Returns the previous function.

2.2.2.2 bfd_set_error_program_name

Synopsis

void bfd_set_error_program_name (const char *);

Description
Set the program name to use when printing a BFD error. This is printed before the error
message followed by a colon and space. The string must not be changed after it is passed
to this function.

2.2.2.3 bfd_get_error_handler

Synopsis

bfd_error_handler_type bfd_get_error_handler (void);

Description
Return the BFD error handler function.

2.2.3 BFD assert handler

If BFD finds an internal inconsistency, the bfd assert handler is called with information on
the BFD version, BFD source file and line. If this happens, most programs linked against
BFD are expected to want to exit with an error, or mark the current BFD operation as failed,
so it is recommended to override the default handler, which just calls bfd error handler
and continues.

typedef void (*bfd_assert_handler_type) (const char *bfd_formatmsg,
const char *bfd_version,
const char *bfd_file,
int bfd_line);

2.2.3.1 bfd_set_assert_handler

Synopsis

bfd_assert_handler_type bfd_set_assert_handler (bfd_assert_handler_type);

Description
Set the BFD assert handler function. Returns the previous function.

2.2.3.2 bfd_get_assert_handler

Synopsis

bfd_assert_handler_type bfd_get_assert_handler (void);

Description
Return the BFD assert handler function.

Chapter 2: BFD Front End 14

2.3 Miscellaneous

2.3.1 Miscellaneous functions

2.3.1.1 bfd_get_reloc_upper_bound

Synopsis

long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);

Description
Return the number of bytes required to store the relocation information associated with
section sect attached to bfd abfd. If an error occurs, return -1.

2.3.1.2 bfd_canonicalize_reloc

Synopsis

long bfd_canonicalize_reloc
(bfd *abfd, asection *sec, arelent **loc, asymbol **syms);

Description
Call the back end associated with the open BFD abfd and translate the external form of the
relocation information attached to sec into the internal canonical form. Place the table into
memory at loc, which has been preallocated, usually by a call to bfd_get_reloc_upper_
bound. Returns the number of relocs, or -1 on error.

The syms table is also needed for horrible internal magic reasons.

2.3.1.3 bfd_set_reloc

Synopsis

void bfd_set_reloc
(bfd *abfd, asection *sec, arelent **rel, unsigned int count);

Description
Set the relocation pointer and count within section sec to the values rel and count. The
argument abfd is ignored.

2.3.1.4 bfd_set_file_flags

Synopsis

bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);

Description
Set the flag word in the BFD abfd to the value flags.

Possible errors are:

• bfd_error_wrong_format - The target bfd was not of object format.

• bfd_error_invalid_operation - The target bfd was open for reading.

• bfd_error_invalid_operation - The flag word contained a bit which was not appli-
cable to the type of file. E.g., an attempt was made to set the D_PAGED bit on a BFD
format which does not support demand paging.

Chapter 2: BFD Front End 15

2.3.1.5 bfd_get_arch_size

Synopsis

int bfd_get_arch_size (bfd *abfd);

Description
Returns the normalized architecture address size, in bits, as determined by the object file’s
format. By normalized, we mean either 32 or 64. For ELF, this information is included in
the header. Use bfd arch bits per address for number of bits in the architecture address.
Returns
Returns the arch size in bits if known, -1 otherwise.

2.3.1.6 bfd_get_sign_extend_vma

Synopsis

int bfd_get_sign_extend_vma (bfd *abfd);

Description
Indicates if the target architecture "naturally" sign extends an address. Some architectures
implicitly sign extend address values when they are converted to types larger than the size
of an address. For instance, bfd get start address() will return an address sign extended
to fill a bfd vma when this is the case.
Returns
Returns 1 if the target architecture is known to sign extend addresses, 0 if the target
architecture is known to not sign extend addresses, and -1 otherwise.

2.3.1.7 bfd_set_start_address

Synopsis

bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);

Description
Make vma the entry point of output BFD abfd.
Returns
Returns TRUE on success, FALSE otherwise.

2.3.1.8 bfd_get_gp_size

Synopsis

unsigned int bfd_get_gp_size (bfd *abfd);

Description
Return the maximum size of objects to be optimized using the GP register under MIPS
ECOFF. This is typically set by the -G argument to the compiler, assembler or linker.

2.3.1.9 bfd_set_gp_size

Synopsis

void bfd_set_gp_size (bfd *abfd, unsigned int i);

Description
Set the maximum size of objects to be optimized using the GP register under ECOFF or
MIPS ELF. This is typically set by the -G argument to the compiler, assembler or linker.

Chapter 2: BFD Front End 16

2.3.1.10 bfd_scan_vma

Synopsis

bfd_vma bfd_scan_vma (const char *string, const char **end, int base);

Description
Convert, like strtoul, a numerical expression string into a bfd_vma integer, and return
that integer. (Though without as many bells and whistles as strtoul.) The expression is
assumed to be unsigned (i.e., positive). If given a base, it is used as the base for conversion.
A base of 0 causes the function to interpret the string in hex if a leading "0x" or "0X" is
found, otherwise in octal if a leading zero is found, otherwise in decimal.
If the value would overflow, the maximum bfd_vma value is returned.

2.3.1.11 bfd_copy_private_header_data

Synopsis

bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);

Description
Copy private BFD header information from the BFD ibfd to the the BFD obfd. This copies
information that may require sections to exist, but does not require symbol tables. Return
true on success, false on error. Possible error returns are:
• bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_copy_private_header_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_copy_private_header_data, \

(ibfd, obfd))

2.3.1.12 bfd_copy_private_bfd_data

Synopsis

bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);

Description
Copy private BFD information from the BFD ibfd to the the BFD obfd. Return TRUE on
success, FALSE on error. Possible error returns are:
• bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_copy_private_bfd_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_copy_private_bfd_data, \

(ibfd, obfd))

2.3.1.13 bfd_merge_private_bfd_data

Synopsis

bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);

Description
Merge private BFD information from the BFD ibfd to the the output file BFD obfd when
linking. Return TRUE on success, FALSE on error. Possible error returns are:
• bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_merge_private_bfd_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_merge_private_bfd_data, \

(ibfd, obfd))

Chapter 2: BFD Front End 17

2.3.1.14 bfd_set_private_flags

Synopsis

bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);

Description
Set private BFD flag information in the BFD abfd. Return TRUE on success, FALSE on error.
Possible error returns are:

• bfd_error_no_memory - Not enough memory exists to create private data for obfd.
#define bfd_set_private_flags(abfd, flags) \

BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))

2.3.1.15 Other functions

Description
The following functions exist but have not yet been documented.

#define bfd_sizeof_headers(abfd, info) \
BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))

#define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
BFD_SEND (abfd, _bfd_find_nearest_line, \

(abfd, syms, sec, off, file, func, line, NULL))

#define bfd_find_nearest_line_discriminator(abfd, sec, syms, off, file, func, \
line, disc) \

BFD_SEND (abfd, _bfd_find_nearest_line, \
(abfd, syms, sec, off, file, func, line, disc))

#define bfd_find_line(abfd, syms, sym, file, line) \
BFD_SEND (abfd, _bfd_find_line, \

(abfd, syms, sym, file, line))

#define bfd_find_inliner_info(abfd, file, func, line) \
BFD_SEND (abfd, _bfd_find_inliner_info, \

(abfd, file, func, line))

#define bfd_debug_info_start(abfd) \
BFD_SEND (abfd, _bfd_debug_info_start, (abfd))

#define bfd_debug_info_end(abfd) \
BFD_SEND (abfd, _bfd_debug_info_end, (abfd))

#define bfd_debug_info_accumulate(abfd, section) \
BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))

#define bfd_stat_arch_elt(abfd, stat) \
BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))

Chapter 2: BFD Front End 18

#define bfd_update_armap_timestamp(abfd) \
BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))

#define bfd_set_arch_mach(abfd, arch, mach)\
BFD_SEND (abfd, _bfd_set_arch_mach, (abfd, arch, mach))

#define bfd_relax_section(abfd, section, link_info, again) \
BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))

#define bfd_gc_sections(abfd, link_info) \
BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))

#define bfd_lookup_section_flags(link_info, flag_info, section) \
BFD_SEND (abfd, _bfd_lookup_section_flags, (link_info, flag_info, section))

#define bfd_merge_sections(abfd, link_info) \
BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))

#define bfd_is_group_section(abfd, sec) \
BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))

#define bfd_discard_group(abfd, sec) \
BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))

#define bfd_link_hash_table_create(abfd) \
BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))

#define bfd_link_add_symbols(abfd, info) \
BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))

#define bfd_link_just_syms(abfd, sec, info) \
BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))

#define bfd_final_link(abfd, info) \
BFD_SEND (abfd, _bfd_final_link, (abfd, info))

#define bfd_free_cached_info(abfd) \
BFD_SEND (abfd, _bfd_free_cached_info, (abfd))

#define bfd_get_dynamic_symtab_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))

#define bfd_print_private_bfd_data(abfd, file)\
BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))

#define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))

Chapter 2: BFD Front End 19

#define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \
BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \

dyncount, dynsyms, ret))

#define bfd_get_dynamic_reloc_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))

#define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))

extern bfd_byte *bfd_get_relocated_section_contents
(bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
bfd_boolean, asymbol **);

2.3.1.16 bfd_alt_mach_code

Synopsis

bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);

Description
When more than one machine code number is available for the same machine type, this
function can be used to switch between the preferred one (alternative == 0) and any
others. Currently, only ELF supports this feature, with up to two alternate machine codes.

2.3.1.17 bfd_emul_get_maxpagesize

Synopsis

bfd_vma bfd_emul_get_maxpagesize (const char *);

Description
Returns the maximum page size, in bytes, as determined by emulation.
Returns
Returns the maximum page size in bytes for ELF, 0 otherwise.

2.3.1.18 bfd_emul_set_maxpagesize

Synopsis

void bfd_emul_set_maxpagesize (const char *, bfd_vma);

Description
For ELF, set the maximum page size for the emulation. It is a no-op for other formats.

2.3.1.19 bfd_emul_get_commonpagesize

Synopsis

bfd_vma bfd_emul_get_commonpagesize (const char *);

Description
Returns the common page size, in bytes, as determined by emulation.
Returns
Returns the common page size in bytes for ELF, 0 otherwise.

Chapter 2: BFD Front End 20

2.3.1.20 bfd_emul_set_commonpagesize

Synopsis

void bfd_emul_set_commonpagesize (const char *, bfd_vma);

Description
For ELF, set the common page size for the emulation. It is a no-op for other formats.

2.3.1.21 bfd_demangle

Synopsis

char *bfd_demangle (bfd *, const char *, int);

Description
Wrapper around cplus demangle. Strips leading underscores and other such chars that
would otherwise confuse the demangler. If passed a g++ v3 ABI mangled name, returns a
buffer allocated with malloc holding the demangled name. Returns NULL otherwise and
on memory alloc failure.

2.3.1.22 struct bfd_iovec

Description
The struct bfd_iovec contains the internal file I/O class. Each BFD has an instance of
this class and all file I/O is routed through it (it is assumed that the instance implements
all methods listed below).

struct bfd_iovec
{
/* To avoid problems with macros, a "b" rather than "f"

prefix is prepended to each method name. */
/* Attempt to read/write NBYTES on ABFD’s IOSTREAM storing/fetching

bytes starting at PTR. Return the number of bytes actually
transfered (a read past end-of-file returns less than NBYTES),
or -1 (setting bfd_error) if an error occurs. */

file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);
file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,

file_ptr nbytes);
/* Return the current IOSTREAM file offset, or -1 (setting bfd_error

if an error occurs. */
file_ptr (*btell) (struct bfd *abfd);
/* For the following, on successful completion a value of 0 is returned.

Otherwise, a value of -1 is returned (and bfd_error is set). */
int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);
int (*bclose) (struct bfd *abfd);
int (*bflush) (struct bfd *abfd);
int (*bstat) (struct bfd *abfd, struct stat *sb);
/* Mmap a part of the files. ADDR, LEN, PROT, FLAGS and OFFSET are the usual

mmap parameter, except that LEN and OFFSET do not need to be page
aligned. Returns (void *)-1 on failure, mmapped address on success.
Also write in MAP_ADDR the address of the page aligned buffer and in
MAP_LEN the size mapped (a page multiple). Use unmap with MAP_ADDR and

Chapter 2: BFD Front End 21

MAP_LEN to unmap. */
void *(*bmmap) (struct bfd *abfd, void *addr, bfd_size_type len,

int prot, int flags, file_ptr offset,
void **map_addr, bfd_size_type *map_len);

};
extern const struct bfd_iovec _bfd_memory_iovec;

2.3.1.23 bfd_get_mtime

Synopsis

long bfd_get_mtime (bfd *abfd);

Description
Return the file modification time (as read from the file system, or from the archive header
for archive members).

2.3.1.24 bfd_get_size

Synopsis

file_ptr bfd_get_size (bfd *abfd);

Description
Return the file size (as read from file system) for the file associated with BFD abfd.

The initial motivation for, and use of, this routine is not so we can get the exact size of the
object the BFD applies to, since that might not be generally possible (archive members for
example). It would be ideal if someone could eventually modify it so that such results were
guaranteed.

Instead, we want to ask questions like "is this NNN byte sized object I’m about to try read
from file offset YYY reasonable?" As as example of where we might do this, some object
formats use string tables for which the first sizeof (long) bytes of the table contain the
size of the table itself, including the size bytes. If an application tries to read what it
thinks is one of these string tables, without some way to validate the size, and for some
reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the
only clue is likely to be a read error when it tries to read the table, or a "virtual memory
exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte
table it is about to read. This function at least allows us to answer the question, "is the
size reasonable?".

2.3.1.25 bfd_mmap

Synopsis

void *bfd_mmap (bfd *abfd, void *addr, bfd_size_type len,
int prot, int flags, file_ptr offset,
void **map_addr, bfd_size_type *map_len);

Description
Return mmap()ed region of the file, if possible and implemented. LEN and OFFSET do not
need to be page aligned. The page aligned address and length are written to MAP ADDR
and MAP LEN.

Chapter 2: BFD Front End 22

2.4 Memory Usage

BFD keeps all of its internal structures in obstacks. There is one obstack per open BFD
file, into which the current state is stored. When a BFD is closed, the obstack is deleted,
and so everything which has been allocated by BFD for the closing file is thrown away.
BFD does not free anything created by an application, but pointers into bfd structures
become invalid on a bfd_close; for example, after a bfd_close the vector passed to bfd_
canonicalize_symtab is still around, since it has been allocated by the application, but
the data that it pointed to are lost.
The general rule is to not close a BFD until all operations dependent upon data from the
BFD have been completed, or all the data from within the file has been copied. To help
with the management of memory, there is a function (bfd_alloc_size) which returns the
number of bytes in obstacks associated with the supplied BFD. This could be used to select
the greediest open BFD, close it to reclaim the memory, perform some operation and reopen
the BFD again, to get a fresh copy of the data structures.

2.5 Initialization

2.5.1 Initialization functions

These are the functions that handle initializing a BFD.

2.5.1.1 bfd_init

Synopsis

void bfd_init (void);

Description
This routine must be called before any other BFD function to initialize magical internal
data structures.

2.6 Sections

The raw data contained within a BFD is maintained through the section abstraction. A
single BFD may have any number of sections. It keeps hold of them by pointing to the first;
each one points to the next in the list.
Sections are supported in BFD in section.c.

2.6.1 Section input

When a BFD is opened for reading, the section structures are created and attached to the
BFD.
Each section has a name which describes the section in the outside world—for example,
a.out would contain at least three sections, called .text, .data and .bss.
Names need not be unique; for example a COFF file may have several sections named .data.
Sometimes a BFD will contain more than the “natural” number of sections. A back end
may attach other sections containing constructor data, or an application may add a section
(using bfd_make_section) to the sections attached to an already open BFD. For example,
the linker creates an extra section COMMON for each input file’s BFD to hold information
about common storage.

Chapter 2: BFD Front End 23

The raw data is not necessarily read in when the section descriptor is created. Some targets
may leave the data in place until a bfd_get_section_contents call is made. Other back
ends may read in all the data at once. For example, an S-record file has to be read once to
determine the size of the data. An IEEE-695 file doesn’t contain raw data in sections, but
data and relocation expressions intermixed, so the data area has to be parsed to get out
the data and relocations.

2.6.2 Section output

To write a new object style BFD, the various sections to be written have to be created.
They are attached to the BFD in the same way as input sections; data is written to the
sections using bfd_set_section_contents.
Any program that creates or combines sections (e.g., the assembler and linker) must use the
asection fields output_section and output_offset to indicate the file sections to which
each section must be written. (If the section is being created from scratch, output_section
should probably point to the section itself and output_offset should probably be zero.)
The data to be written comes from input sections attached (via output_section pointers)
to the output sections. The output section structure can be considered a filter for the input
section: the output section determines the vma of the output data and the name, but the
input section determines the offset into the output section of the data to be written.
E.g., to create a section "O", starting at 0x100, 0x123 long, containing two subsections, "A"
at offset 0x0 (i.e., at vma 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the asection
structures would look like:

section name "A"
output_offset 0x00
size 0x20
output_section -----------> section name "O"

| vma 0x100
section name "B" | size 0x123

output_offset 0x20 |
size 0x103 |
output_section --------|

2.6.3 Link orders

The data within a section is stored in a link order. These are much like the fixups in gas.
The link order abstraction allows a section to grow and shrink within itself.
A link order knows how big it is, and which is the next link order and where the raw data
for it is; it also points to a list of relocations which apply to it.
The link order is used by the linker to perform relaxing on final code. The compiler creates
code which is as big as necessary to make it work without relaxing, and the user can select
whether to relax. Sometimes relaxing takes a lot of time. The linker runs around the
relocations to see if any are attached to data which can be shrunk, if so it does it on a
link order by link order basis.

2.6.4 typedef asection

Here is the section structure:

Chapter 2: BFD Front End 24

typedef struct bfd_section
{
/* The name of the section; the name isn’t a copy, the pointer is

the same as that passed to bfd_make_section. */
const char *name;

/* A unique sequence number. */
int id;

/* Which section in the bfd; 0..n-1 as sections are created in a bfd. */
int index;

/* The next section in the list belonging to the BFD, or NULL. */
struct bfd_section *next;

/* The previous section in the list belonging to the BFD, or NULL. */
struct bfd_section *prev;

/* The field flags contains attributes of the section. Some
flags are read in from the object file, and some are
synthesized from other information. */

flagword flags;

#define SEC_NO_FLAGS 0x000

/* Tells the OS to allocate space for this section when loading.
This is clear for a section containing debug information only. */

#define SEC_ALLOC 0x001

/* Tells the OS to load the section from the file when loading.
This is clear for a .bss section. */

#define SEC_LOAD 0x002

/* The section contains data still to be relocated, so there is
some relocation information too. */

#define SEC_RELOC 0x004

/* A signal to the OS that the section contains read only data. */
#define SEC_READONLY 0x008

/* The section contains code only. */
#define SEC_CODE 0x010

/* The section contains data only. */
#define SEC_DATA 0x020

Chapter 2: BFD Front End 25

/* The section will reside in ROM. */
#define SEC_ROM 0x040

/* The section contains constructor information. This section
type is used by the linker to create lists of constructors and
destructors used by g++. When a back end sees a symbol
which should be used in a constructor list, it creates a new
section for the type of name (e.g., __CTOR_LIST__), attaches
the symbol to it, and builds a relocation. To build the lists
of constructors, all the linker has to do is catenate all the
sections called __CTOR_LIST__ and relocate the data
contained within - exactly the operations it would peform on
standard data. */

#define SEC_CONSTRUCTOR 0x080

/* The section has contents - a data section could be
SEC_ALLOC | SEC_HAS_CONTENTS; a debug section could be
SEC_HAS_CONTENTS */

#define SEC_HAS_CONTENTS 0x100

/* An instruction to the linker to not output the section
even if it has information which would normally be written. */

#define SEC_NEVER_LOAD 0x200

/* The section contains thread local data. */
#define SEC_THREAD_LOCAL 0x400

/* The section has GOT references. This flag is only for the
linker, and is currently only used by the elf32-hppa back end.
It will be set if global offset table references were detected
in this section, which indicate to the linker that the section
contains PIC code, and must be handled specially when doing a
static link. */

#define SEC_HAS_GOT_REF 0x800

/* The section contains common symbols (symbols may be defined
multiple times, the value of a symbol is the amount of
space it requires, and the largest symbol value is the one
used). Most targets have exactly one of these (which we
translate to bfd_com_section_ptr), but ECOFF has two. */

#define SEC_IS_COMMON 0x1000

/* The section contains only debugging information. For
example, this is set for ELF .debug and .stab sections.
strip tests this flag to see if a section can be
discarded. */

#define SEC_DEBUGGING 0x2000

Chapter 2: BFD Front End 26

/* The contents of this section are held in memory pointed to
by the contents field. This is checked by bfd_get_section_contents,
and the data is retrieved from memory if appropriate. */

#define SEC_IN_MEMORY 0x4000

/* The contents of this section are to be excluded by the
linker for executable and shared objects unless those
objects are to be further relocated. */

#define SEC_EXCLUDE 0x8000

/* The contents of this section are to be sorted based on the sum of
the symbol and addend values specified by the associated relocation
entries. Entries without associated relocation entries will be
appended to the end of the section in an unspecified order. */

#define SEC_SORT_ENTRIES 0x10000

/* When linking, duplicate sections of the same name should be
discarded, rather than being combined into a single section as
is usually done. This is similar to how common symbols are
handled. See SEC_LINK_DUPLICATES below. */

#define SEC_LINK_ONCE 0x20000

/* If SEC_LINK_ONCE is set, this bitfield describes how the linker
should handle duplicate sections. */

#define SEC_LINK_DUPLICATES 0xc0000

/* This value for SEC_LINK_DUPLICATES means that duplicate
sections with the same name should simply be discarded. */

#define SEC_LINK_DUPLICATES_DISCARD 0x0

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if there are any duplicate sections, although
it should still only link one copy. */

#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if any duplicate sections are a different size. */

#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if any duplicate sections contain different
contents. */

#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
(SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)

/* This section was created by the linker as part of dynamic

Chapter 2: BFD Front End 27

relocation or other arcane processing. It is skipped when
going through the first-pass output, trusting that someone
else up the line will take care of it later. */

#define SEC_LINKER_CREATED 0x100000

/* This section should not be subject to garbage collection.
Also set to inform the linker that this section should not be
listed in the link map as discarded. */

#define SEC_KEEP 0x200000

/* This section contains "short" data, and should be placed
"near" the GP. */

#define SEC_SMALL_DATA 0x400000

/* Attempt to merge identical entities in the section.
Entity size is given in the entsize field. */

#define SEC_MERGE 0x800000

/* If given with SEC_MERGE, entities to merge are zero terminated
strings where entsize specifies character size instead of fixed
size entries. */

#define SEC_STRINGS 0x1000000

/* This section contains data about section groups. */
#define SEC_GROUP 0x2000000

/* The section is a COFF shared library section. This flag is
only for the linker. If this type of section appears in
the input file, the linker must copy it to the output file
without changing the vma or size. FIXME: Although this
was originally intended to be general, it really is COFF
specific (and the flag was renamed to indicate this). It
might be cleaner to have some more general mechanism to
allow the back end to control what the linker does with
sections. */

#define SEC_COFF_SHARED_LIBRARY 0x4000000

/* This input section should be copied to output in reverse order
as an array of pointers. This is for ELF linker internal use
only. */

#define SEC_ELF_REVERSE_COPY 0x4000000

/* This section contains data which may be shared with other
executables or shared objects. This is for COFF only. */

#define SEC_COFF_SHARED 0x8000000

/* When a section with this flag is being linked, then if the size of

Chapter 2: BFD Front End 28

the input section is less than a page, it should not cross a page
boundary. If the size of the input section is one page or more,
it should be aligned on a page boundary. This is for TI
TMS320C54X only. */

#define SEC_TIC54X_BLOCK 0x10000000

/* Conditionally link this section; do not link if there are no
references found to any symbol in the section. This is for TI
TMS320C54X only. */

#define SEC_TIC54X_CLINK 0x20000000

/* Indicate that section has the no read flag set. This happens
when memory read flag isn’t set. */

#define SEC_COFF_NOREAD 0x40000000

/* End of section flags. */

/* Some internal packed boolean fields. */

/* See the vma field. */
unsigned int user_set_vma : 1;

/* A mark flag used by some of the linker backends. */
unsigned int linker_mark : 1;

/* Another mark flag used by some of the linker backends. Set for
output sections that have an input section. */

unsigned int linker_has_input : 1;

/* Mark flag used by some linker backends for garbage collection. */
unsigned int gc_mark : 1;

/* Section compression status. */
unsigned int compress_status : 2;

#define COMPRESS_SECTION_NONE 0
#define COMPRESS_SECTION_DONE 1
#define DECOMPRESS_SECTION_SIZED 2

/* The following flags are used by the ELF linker. */

/* Mark sections which have been allocated to segments. */
unsigned int segment_mark : 1;

/* Type of sec_info information. */
unsigned int sec_info_type:3;

#define SEC_INFO_TYPE_NONE 0
#define SEC_INFO_TYPE_STABS 1

Chapter 2: BFD Front End 29

#define SEC_INFO_TYPE_MERGE 2
#define SEC_INFO_TYPE_EH_FRAME 3
#define SEC_INFO_TYPE_JUST_SYMS 4
#define SEC_INFO_TYPE_TARGET 5

/* Nonzero if this section uses RELA relocations, rather than REL. */
unsigned int use_rela_p:1;

/* Bits used by various backends. The generic code doesn’t touch
these fields. */

unsigned int sec_flg0:1;
unsigned int sec_flg1:1;
unsigned int sec_flg2:1;
unsigned int sec_flg3:1;
unsigned int sec_flg4:1;
unsigned int sec_flg5:1;

/* End of internal packed boolean fields. */

/* The virtual memory address of the section - where it will be
at run time. The symbols are relocated against this. The
user_set_vma flag is maintained by bfd; if it’s not set, the
backend can assign addresses (for example, in a.out, where
the default address for .data is dependent on the specific
target and various flags). */

bfd_vma vma;

/* The load address of the section - where it would be in a
rom image; really only used for writing section header
information. */

bfd_vma lma;

/* The size of the section in octets, as it will be output.
Contains a value even if the section has no contents (e.g., the
size of .bss). */

bfd_size_type size;

/* For input sections, the original size on disk of the section, in
octets. This field should be set for any section whose size is
changed by linker relaxation. It is required for sections where
the linker relaxation scheme doesn’t cache altered section and
reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
targets), and thus the original size needs to be kept to read the
section multiple times. For output sections, rawsize holds the
section size calculated on a previous linker relaxation pass. */

bfd_size_type rawsize;

Chapter 2: BFD Front End 30

/* The compressed size of the section in octets. */
bfd_size_type compressed_size;

/* Relaxation table. */
struct relax_table *relax;

/* Count of used relaxation table entries. */
int relax_count;

/* If this section is going to be output, then this value is the
offset in *bytes* into the output section of the first byte in the
input section (byte ==> smallest addressable unit on the
target). In most cases, if this was going to start at the
100th octet (8-bit quantity) in the output section, this value
would be 100. However, if the target byte size is 16 bits
(bfd_octets_per_byte is "2"), this value would be 50. */

bfd_vma output_offset;

/* The output section through which to map on output. */
struct bfd_section *output_section;

/* The alignment requirement of the section, as an exponent of 2 -
e.g., 3 aligns to 2^3 (or 8). */

unsigned int alignment_power;

/* If an input section, a pointer to a vector of relocation
records for the data in this section. */

struct reloc_cache_entry *relocation;

/* If an output section, a pointer to a vector of pointers to
relocation records for the data in this section. */

struct reloc_cache_entry **orelocation;

/* The number of relocation records in one of the above. */
unsigned reloc_count;

/* Information below is back end specific - and not always used
or updated. */

/* File position of section data. */
file_ptr filepos;

/* File position of relocation info. */
file_ptr rel_filepos;

Chapter 2: BFD Front End 31

/* File position of line data. */
file_ptr line_filepos;

/* Pointer to data for applications. */
void *userdata;

/* If the SEC_IN_MEMORY flag is set, this points to the actual
contents. */

unsigned char *contents;

/* Attached line number information. */
alent *lineno;

/* Number of line number records. */
unsigned int lineno_count;

/* Entity size for merging purposes. */
unsigned int entsize;

/* Points to the kept section if this section is a link-once section,
and is discarded. */

struct bfd_section *kept_section;

/* When a section is being output, this value changes as more
linenumbers are written out. */

file_ptr moving_line_filepos;

/* What the section number is in the target world. */
int target_index;

void *used_by_bfd;

/* If this is a constructor section then here is a list of the
relocations created to relocate items within it. */

struct relent_chain *constructor_chain;

/* The BFD which owns the section. */
bfd *owner;

/* A symbol which points at this section only. */
struct bfd_symbol *symbol;
struct bfd_symbol **symbol_ptr_ptr;

/* Early in the link process, map_head and map_tail are used to build
a list of input sections attached to an output section. Later,
output sections use these fields for a list of bfd_link_order
structs. */

Chapter 2: BFD Front End 32

union {
struct bfd_link_order *link_order;
struct bfd_section *s;

} map_head, map_tail;
} asection;

/* Relax table contains information about instructions which can
be removed by relaxation -- replacing a long address with a
short address. */

struct relax_table {
/* Address where bytes may be deleted. */
bfd_vma addr;

/* Number of bytes to be deleted. */
int size;

};

/* Note: the following are provided as inline functions rather than macros
because not all callers use the return value. A macro implementation
would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
compilers will complain about comma expressions that have no effect. */

static inline bfd_boolean
bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
{
ptr->userdata = val;
return TRUE;

}

static inline bfd_boolean
bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
{
ptr->vma = ptr->lma = val;
ptr->user_set_vma = TRUE;
return TRUE;

}

static inline bfd_boolean
bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, un-
signed int val)
{
ptr->alignment_power = val;
return TRUE;

}

/* These sections are global, and are managed by BFD. The application
and target back end are not permitted to change the values in
these sections. */

Chapter 2: BFD Front End 33

extern asection _bfd_std_section[4];

#define BFD_ABS_SECTION_NAME "*ABS*"
#define BFD_UND_SECTION_NAME "*UND*"
#define BFD_COM_SECTION_NAME "*COM*"
#define BFD_IND_SECTION_NAME "*IND*"

/* Pointer to the common section. */
#define bfd_com_section_ptr (&_bfd_std_section[0])
/* Pointer to the undefined section. */
#define bfd_und_section_ptr (&_bfd_std_section[1])
/* Pointer to the absolute section. */
#define bfd_abs_section_ptr (&_bfd_std_section[2])
/* Pointer to the indirect section. */
#define bfd_ind_section_ptr (&_bfd_std_section[3])

#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)

#define bfd_is_const_section(SEC) \
(((SEC) == bfd_abs_section_ptr) \
|| ((SEC) == bfd_und_section_ptr) \
|| ((SEC) == bfd_com_section_ptr) \
|| ((SEC) == bfd_ind_section_ptr))

/* Macros to handle insertion and deletion of a bfd’s sections. These
only handle the list pointers, ie. do not adjust section_count,
target_index etc. */

#define bfd_section_list_remove(ABFD, S) \
do \
{ \

asection *_s = S; \
asection *_next = _s->next; \
asection *_prev = _s->prev; \
if (_prev) \
_prev->next = _next; \

else \
(ABFD)->sections = _next; \

if (_next) \
_next->prev = _prev; \

else \
(ABFD)->section_last = _prev; \

} \
while (0)

#define bfd_section_list_append(ABFD, S) \
do \

Chapter 2: BFD Front End 34

{ \
asection *_s = S; \
bfd *_abfd = ABFD; \
_s->next = NULL; \
if (_abfd->section_last) \
{ \

_s->prev = _abfd->section_last; \
_abfd->section_last->next = _s; \

} \
else \
{ \

_s->prev = NULL; \
_abfd->sections = _s; \

} \
_abfd->section_last = _s; \

} \
while (0)

#define bfd_section_list_prepend(ABFD, S) \
do \
{ \

asection *_s = S; \
bfd *_abfd = ABFD; \
_s->prev = NULL; \
if (_abfd->sections) \
{ \

_s->next = _abfd->sections; \
_abfd->sections->prev = _s; \

} \
else \
{ \

_s->next = NULL; \
_abfd->section_last = _s; \

} \
_abfd->sections = _s; \

} \
while (0)

#define bfd_section_list_insert_after(ABFD, A, S) \
do \
{ \

asection *_a = A; \
asection *_s = S; \
asection *_next = _a->next; \
_s->next = _next; \
_s->prev = _a; \
_a->next = _s; \
if (_next) \
_next->prev = _s; \

Chapter 2: BFD Front End 35

else \
(ABFD)->section_last = _s; \

} \
while (0)

#define bfd_section_list_insert_before(ABFD, B, S) \
do \
{ \

asection *_b = B; \
asection *_s = S; \
asection *_prev = _b->prev; \
_s->prev = _prev; \
_s->next = _b; \
_b->prev = _s; \
if (_prev) \
_prev->next = _s; \

else \
(ABFD)->sections = _s; \

} \
while (0)

#define bfd_section_removed_from_list(ABFD, S) \
((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))

#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
/* name, id, index, next, prev, flags, user_set_vma, */ \
{ NAME, IDX, 0, NULL, NULL, FLAGS, 0, \

\
/* linker_mark, linker_has_input, gc_mark, decompress_status, */ \

0, 0, 1, 0, \
\

/* segment_mark, sec_info_type, use_rela_p, */ \
0, 0, 0, \

\
/* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, */ \

0, 0, 0, 0, 0, 0, \
\

/* vma, lma, size, rawsize, compressed_size, relax, relax_count, */ \
0, 0, 0, 0, 0, 0, 0, \

\
/* output_offset, output_section, alignment_power, */ \

0, &SEC, 0, \
\

/* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
NULL, NULL, 0, 0, 0, \

\
/* line_filepos, userdata, contents, lineno, lineno_count, */ \

0, NULL, NULL, NULL, 0, \
\

Chapter 2: BFD Front End 36

/* entsize, kept_section, moving_line_filepos, */ \
0, NULL, 0, \

\
/* target_index, used_by_bfd, constructor_chain, owner, */ \

0, NULL, NULL, NULL, \
\

/* symbol, symbol_ptr_ptr, */ \
(struct bfd_symbol *) SYM, &SEC.symbol, \

\
/* map_head, map_tail */ \

{ NULL }, { NULL } \
}

2.6.5 Section prototypes

These are the functions exported by the section handling part of BFD.

2.6.5.1 bfd_section_list_clear

Synopsis

void bfd_section_list_clear (bfd *);

Description
Clears the section list, and also resets the section count and hash table entries.

2.6.5.2 bfd_get_section_by_name

Synopsis

asection *bfd_get_section_by_name (bfd *abfd, const char *name);

Description
Return the most recently created section attached to abfd named name. Return NULL if
no such section exists.

2.6.5.3 bfd_get_next_section_by_name

Synopsis

asection *bfd_get_next_section_by_name (asection *sec);

Description
Given sec is a section returned by bfd_get_section_by_name, return the next most recently
created section attached to the same BFD with the same name. Return NULL if no such
section exists.

2.6.5.4 bfd_get_linker_section

Synopsis

asection *bfd_get_linker_section (bfd *abfd, const char *name);

Description
Return the linker created section attached to abfd named name. Return NULL if no such
section exists.

Chapter 2: BFD Front End 37

2.6.5.5 bfd_get_section_by_name_if

Synopsis

asection *bfd_get_section_by_name_if
(bfd *abfd,
const char *name,
bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
void *obj);

Description
Call the provided function func for each section attached to the BFD abfd whose name
matches name, passing obj as an argument. The function will be called as if by

func (abfd, the_section, obj);

It returns the first section for which func returns true, otherwise NULL.

2.6.5.6 bfd_get_unique_section_name

Synopsis

char *bfd_get_unique_section_name
(bfd *abfd, const char *templat, int *count);

Description
Invent a section name that is unique in abfd by tacking a dot and a digit suffix onto the
original templat. If count is non-NULL, then it specifies the first number tried as a suffix
to generate a unique name. The value pointed to by count will be incremented in this case.

2.6.5.7 bfd_make_section_old_way

Synopsis

asection *bfd_make_section_old_way (bfd *abfd, const char *name);

Description
Create a new empty section called name and attach it to the end of the chain of sections for
the BFD abfd. An attempt to create a section with a name which is already in use returns
its pointer without changing the section chain.
It has the funny name since this is the way it used to be before it was rewritten....
Possible errors are:
• bfd_error_invalid_operation - If output has already started for this BFD.
• bfd_error_no_memory - If memory allocation fails.

2.6.5.8 bfd_make_section_anyway_with_flags

Synopsis

asection *bfd_make_section_anyway_with_flags
(bfd *abfd, const char *name, flagword flags);

Description
Create a new empty section called name and attach it to the end of the chain of sections
for abfd. Create a new section even if there is already a section with that name. Also set
the attributes of the new section to the value flags.
Return NULL and set bfd_error on error; possible errors are:

Chapter 2: BFD Front End 38

• bfd_error_invalid_operation - If output has already started for abfd.

• bfd_error_no_memory - If memory allocation fails.

2.6.5.9 bfd_make_section_anyway

Synopsis

asection *bfd_make_section_anyway (bfd *abfd, const char *name);

Description
Create a new empty section called name and attach it to the end of the chain of sections
for abfd. Create a new section even if there is already a section with that name.

Return NULL and set bfd_error on error; possible errors are:

• bfd_error_invalid_operation - If output has already started for abfd.

• bfd_error_no_memory - If memory allocation fails.

2.6.5.10 bfd_make_section_with_flags

Synopsis

asection *bfd_make_section_with_flags
(bfd *, const char *name, flagword flags);

Description
Like bfd_make_section_anyway, but return NULL (without calling bfd set error ()) without
changing the section chain if there is already a section named name. Also set the attributes
of the new section to the value flags. If there is an error, return NULL and set bfd_error.

2.6.5.11 bfd_make_section

Synopsis

asection *bfd_make_section (bfd *, const char *name);

Description
Like bfd_make_section_anyway, but return NULL (without calling bfd set error ()) without
changing the section chain if there is already a section named name. If there is an error,
return NULL and set bfd_error.

2.6.5.12 bfd_set_section_flags

Synopsis

bfd_boolean bfd_set_section_flags
(bfd *abfd, asection *sec, flagword flags);

Description
Set the attributes of the section sec in the BFD abfd to the value flags. Return TRUE on
success, FALSE on error. Possible error returns are:

• bfd_error_invalid_operation - The section cannot have one or more of the at-
tributes requested. For example, a .bss section in a.out may not have the SEC_HAS_
CONTENTS field set.

Chapter 2: BFD Front End 39

2.6.5.13 bfd_rename_section

Synopsis

void bfd_rename_section
(bfd *abfd, asection *sec, const char *newname);

Description
Rename section sec in abfd to newname.

2.6.5.14 bfd_map_over_sections

Synopsis

void bfd_map_over_sections
(bfd *abfd,
void (*func) (bfd *abfd, asection *sect, void *obj),
void *obj);

Description
Call the provided function func for each section attached to the BFD abfd, passing obj as
an argument. The function will be called as if by

func (abfd, the_section, obj);

This is the preferred method for iterating over sections; an alternative would be to use a
loop:

asection *p;
for (p = abfd->sections; p != NULL; p = p->next)

func (abfd, p, ...)

2.6.5.15 bfd_sections_find_if

Synopsis

asection *bfd_sections_find_if
(bfd *abfd,
bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
void *obj);

Description
Call the provided function operation for each section attached to the BFD abfd, passing
obj as an argument. The function will be called as if by

operation (abfd, the_section, obj);

It returns the first section for which operation returns true.

2.6.5.16 bfd_set_section_size

Synopsis

bfd_boolean bfd_set_section_size
(bfd *abfd, asection *sec, bfd_size_type val);

Description
Set sec to the size val. If the operation is ok, then TRUE is returned, else FALSE.
Possible error returns:
• bfd_error_invalid_operation - Writing has started to the BFD, so setting the size

is invalid.

Chapter 2: BFD Front End 40

2.6.5.17 bfd_set_section_contents

Synopsis

bfd_boolean bfd_set_section_contents
(bfd *abfd, asection *section, const void *data,
file_ptr offset, bfd_size_type count);

Description
Sets the contents of the section section in BFD abfd to the data starting in memory at
data. The data is written to the output section starting at offset offset for count octets.
Normally TRUE is returned, else FALSE. Possible error returns are:
• bfd_error_no_contents - The output section does not have the SEC_HAS_CONTENTS

attribute, so nothing can be written to it.
• and some more too

This routine is front end to the back end function _bfd_set_section_contents.

2.6.5.18 bfd_get_section_contents

Synopsis

bfd_boolean bfd_get_section_contents
(bfd *abfd, asection *section, void *location, file_ptr offset,
bfd_size_type count);

Description
Read data from section in BFD abfd into memory starting at location. The data is read at
an offset of offset from the start of the input section, and is read for count bytes.
If the contents of a constructor with the SEC_CONSTRUCTOR flag set are requested or if the
section does not have the SEC_HAS_CONTENTS flag set, then the location is filled with zeroes.
If no errors occur, TRUE is returned, else FALSE.

2.6.5.19 bfd_malloc_and_get_section

Synopsis

bfd_boolean bfd_malloc_and_get_section
(bfd *abfd, asection *section, bfd_byte **buf);

Description
Read all data from section in BFD abfd into a buffer, *buf, malloc’d by this function.

2.6.5.20 bfd_copy_private_section_data

Synopsis

bfd_boolean bfd_copy_private_section_data
(bfd *ibfd, asection *isec, bfd *obfd, asection *osec);

Description
Copy private section information from isec in the BFD ibfd to the section osec in the BFD
obfd. Return TRUE on success, FALSE on error. Possible error returns are:
• bfd_error_no_memory - Not enough memory exists to create private data for osec.

#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
BFD_SEND (obfd, _bfd_copy_private_section_data, \

(ibfd, isection, obfd, osection))

Chapter 2: BFD Front End 41

2.6.5.21 bfd_generic_is_group_section

Synopsis

bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);

Description
Returns TRUE if sec is a member of a group.

2.6.5.22 bfd_generic_discard_group

Synopsis

bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);

Description
Remove all members of group from the output.

2.7 Symbols

BFD tries to maintain as much symbol information as it can when it moves information
from file to file. BFD passes information to applications though the asymbol structure.
When the application requests the symbol table, BFD reads the table in the native form and
translates parts of it into the internal format. To maintain more than the information passed
to applications, some targets keep some information “behind the scenes” in a structure only
the particular back end knows about. For example, the coff back end keeps the original
symbol table structure as well as the canonical structure when a BFD is read in. On output,
the coff back end can reconstruct the output symbol table so that no information is lost,
even information unique to coff which BFD doesn’t know or understand. If a coff symbol
table were read, but were written through an a.out back end, all the coff specific information
would be lost. The symbol table of a BFD is not necessarily read in until a canonicalize
request is made. Then the BFD back end fills in a table provided by the application with
pointers to the canonical information. To output symbols, the application provides BFD
with a table of pointers to pointers to asymbols. This allows applications like the linker
to output a symbol as it was read, since the “behind the scenes” information will be still
available.

2.7.1 Reading symbols

There are two stages to reading a symbol table from a BFD: allocating storage, and the
actual reading process. This is an excerpt from an application which reads the symbol table:

long storage_needed;
asymbol **symbol_table;
long number_of_symbols;
long i;

storage_needed = bfd_get_symtab_upper_bound (abfd);

if (storage_needed < 0)
FAIL

if (storage_needed == 0)
return;

Chapter 2: BFD Front End 42

symbol_table = xmalloc (storage_needed);
...

number_of_symbols =
bfd_canonicalize_symtab (abfd, symbol_table);

if (number_of_symbols < 0)
FAIL

for (i = 0; i < number_of_symbols; i++)
process_symbol (symbol_table[i]);

All storage for the symbols themselves is in an objalloc connected to the BFD; it is freed
when the BFD is closed.

2.7.2 Writing symbols

Writing of a symbol table is automatic when a BFD open for writing is closed. The appli-
cation attaches a vector of pointers to pointers to symbols to the BFD being written, and
fills in the symbol count. The close and cleanup code reads through the table provided and
performs all the necessary operations. The BFD output code must always be provided with
an “owned” symbol: one which has come from another BFD, or one which has been created
using bfd_make_empty_symbol. Here is an example showing the creation of a symbol table
with only one element:

#include "sysdep.h"
#include "bfd.h"
int main (void)
{
bfd *abfd;
asymbol *ptrs[2];
asymbol *new;

abfd = bfd_openw ("foo","a.out-sunos-big");
bfd_set_format (abfd, bfd_object);
new = bfd_make_empty_symbol (abfd);
new->name = "dummy_symbol";
new->section = bfd_make_section_old_way (abfd, ".text");
new->flags = BSF_GLOBAL;
new->value = 0x12345;

ptrs[0] = new;
ptrs[1] = 0;

bfd_set_symtab (abfd, ptrs, 1);
bfd_close (abfd);
return 0;

}

Chapter 2: BFD Front End 43

./makesym
nm foo
00012345 A dummy_symbol

Many formats cannot represent arbitrary symbol information; for instance, the a.out object
format does not allow an arbitrary number of sections. A symbol pointing to a section which
is not one of .text, .data or .bss cannot be described.

2.7.3 Mini Symbols

Mini symbols provide read-only access to the symbol table. They use less memory space,
but require more time to access. They can be useful for tools like nm or objdump, which
may have to handle symbol tables of extremely large executables.
The bfd_read_minisymbols function will read the symbols into memory in an internal
form. It will return a void * pointer to a block of memory, a symbol count, and the size
of each symbol. The pointer is allocated using malloc, and should be freed by the caller
when it is no longer needed.
The function bfd_minisymbol_to_symbol will take a pointer to a minisymbol, and a pointer
to a structure returned by bfd_make_empty_symbol, and return a asymbol structure. The
return value may or may not be the same as the value from bfd_make_empty_symbol which
was passed in.

2.7.4 typedef asymbol

An asymbol has the form:

typedef struct bfd_symbol
{
/* A pointer to the BFD which owns the symbol. This information

is necessary so that a back end can work out what additional
information (invisible to the application writer) is carried
with the symbol.

This field is *almost* redundant, since you can use section->owner
instead, except that some symbols point to the global sections
bfd_{abs,com,und}_section. This could be fixed by making
these globals be per-bfd (or per-target-flavor). FIXME. */

struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */

/* The text of the symbol. The name is left alone, and not copied; the
application may not alter it. */

const char *name;

/* The value of the symbol. This really should be a union of a
numeric value with a pointer, since some flags indicate that
a pointer to another symbol is stored here. */

symvalue value;

/* Attributes of a symbol. */

Chapter 2: BFD Front End 44

#define BSF_NO_FLAGS 0x00

/* The symbol has local scope; static in C. The value
is the offset into the section of the data. */

#define BSF_LOCAL (1 << 0)

/* The symbol has global scope; initialized data in C. The
value is the offset into the section of the data. */

#define BSF_GLOBAL (1 << 1)

/* The symbol has global scope and is exported. The value is
the offset into the section of the data. */

#define BSF_EXPORT BSF_GLOBAL /* No real difference. */

/* A normal C symbol would be one of:
BSF_LOCAL, BSF_COMMON, BSF_UNDEFINED or
BSF_GLOBAL. */

/* The symbol is a debugging record. The value has an arbitrary
meaning, unless BSF_DEBUGGING_RELOC is also set. */

#define BSF_DEBUGGING (1 << 2)

/* The symbol denotes a function entry point. Used in ELF,
perhaps others someday. */

#define BSF_FUNCTION (1 << 3)

/* Used by the linker. */
#define BSF_KEEP (1 << 5)
#define BSF_KEEP_G (1 << 6)

/* A weak global symbol, overridable without warnings by
a regular global symbol of the same name. */

#define BSF_WEAK (1 << 7)

/* This symbol was created to point to a section, e.g. ELF’s
STT_SECTION symbols. */

#define BSF_SECTION_SYM (1 << 8)

/* The symbol used to be a common symbol, but now it is
allocated. */

#define BSF_OLD_COMMON (1 << 9)

/* In some files the type of a symbol sometimes alters its
location in an output file - ie in coff a ISFCN symbol
which is also C_EXT symbol appears where it was
declared and not at the end of a section. This bit is set
by the target BFD part to convey this information. */

Chapter 2: BFD Front End 45

#define BSF_NOT_AT_END (1 << 10)

/* Signal that the symbol is the label of constructor section. */
#define BSF_CONSTRUCTOR (1 << 11)

/* Signal that the symbol is a warning symbol. The name is a
warning. The name of the next symbol is the one to warn about;
if a reference is made to a symbol with the same name as the next
symbol, a warning is issued by the linker. */

#define BSF_WARNING (1 << 12)

/* Signal that the symbol is indirect. This symbol is an indirect
pointer to the symbol with the same name as the next symbol. */

#define BSF_INDIRECT (1 << 13)

/* BSF_FILE marks symbols that contain a file name. This is used
for ELF STT_FILE symbols. */

#define BSF_FILE (1 << 14)

/* Symbol is from dynamic linking information. */
#define BSF_DYNAMIC (1 << 15)

/* The symbol denotes a data object. Used in ELF, and perhaps
others someday. */

#define BSF_OBJECT (1 << 16)

/* This symbol is a debugging symbol. The value is the offset
into the section of the data. BSF_DEBUGGING should be set
as well. */

#define BSF_DEBUGGING_RELOC (1 << 17)

/* This symbol is thread local. Used in ELF. */
#define BSF_THREAD_LOCAL (1 << 18)

/* This symbol represents a complex relocation expression,
with the expression tree serialized in the symbol name. */

#define BSF_RELC (1 << 19)

/* This symbol represents a signed complex relocation expression,
with the expression tree serialized in the symbol name. */

#define BSF_SRELC (1 << 20)

/* This symbol was created by bfd_get_synthetic_symtab. */
#define BSF_SYNTHETIC (1 << 21)

/* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
The dynamic linker will compute the value of this symbol by

Chapter 2: BFD Front End 46

calling the function that it points to. BSF_FUNCTION must
also be also set. */

#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
/* This symbol is a globally unique data object. The dynamic linker

will make sure that in the entire process there is just one symbol
with this name and type in use. BSF_OBJECT must also be set. */

#define BSF_GNU_UNIQUE (1 << 23)

flagword flags;

/* A pointer to the section to which this symbol is
relative. This will always be non NULL, there are special
sections for undefined and absolute symbols. */

struct bfd_section *section;

/* Back end special data. */
union
{

void *p;
bfd_vma i;

}
udata;

}
asymbol;

2.7.5 Symbol handling functions

2.7.5.1 bfd_get_symtab_upper_bound

Description
Return the number of bytes required to store a vector of pointers to asymbols for all the
symbols in the BFD abfd, including a terminal NULL pointer. If there are no symbols in
the BFD, then return 0. If an error occurs, return -1.

#define bfd_get_symtab_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))

2.7.5.2 bfd_is_local_label

Synopsis

bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);

Description
Return TRUE if the given symbol sym in the BFD abfd is a compiler generated local label,
else return FALSE.

2.7.5.3 bfd_is_local_label_name

Synopsis

Chapter 2: BFD Front End 47

bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);

Description
Return TRUE if a symbol with the name name in the BFD abfd is a compiler generated
local label, else return FALSE. This just checks whether the name has the form of a local
label.

#define bfd_is_local_label_name(abfd, name) \
BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))

2.7.5.4 bfd_is_target_special_symbol

Synopsis

bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);

Description
Return TRUE iff a symbol sym in the BFD abfd is something special to the particular
target represented by the BFD. Such symbols should normally not be mentioned to the
user.

#define bfd_is_target_special_symbol(abfd, sym) \
BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))

2.7.5.5 bfd_canonicalize_symtab

Description
Read the symbols from the BFD abfd, and fills in the vector location with pointers to the
symbols and a trailing NULL. Return the actual number of symbol pointers, not including
the NULL.

#define bfd_canonicalize_symtab(abfd, location) \
BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))

2.7.5.6 bfd_set_symtab

Synopsis

bfd_boolean bfd_set_symtab
(bfd *abfd, asymbol **location, unsigned int count);

Description
Arrange that when the output BFD abfd is closed, the table location of count pointers to
symbols will be written.

2.7.5.7 bfd_print_symbol_vandf

Synopsis

void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);

Description
Print the value and flags of the symbol supplied to the stream file.

Chapter 2: BFD Front End 48

2.7.5.8 bfd_make_empty_symbol

Description
Create a new asymbol structure for the BFD abfd and return a pointer to it.
This routine is necessary because each back end has private information surrounding the
asymbol. Building your own asymbol and pointing to it will not create the private infor-
mation, and will cause problems later on.

#define bfd_make_empty_symbol(abfd) \
BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))

2.7.5.9 _bfd_generic_make_empty_symbol

Synopsis

asymbol *_bfd_generic_make_empty_symbol (bfd *);

Description
Create a new asymbol structure for the BFD abfd and return a pointer to it. Used by core
file routines, binary back-end and anywhere else where no private info is needed.

2.7.5.10 bfd_make_debug_symbol

Description
Create a new asymbol structure for the BFD abfd, to be used as a debugging symbol.
Further details of its use have yet to be worked out.

#define bfd_make_debug_symbol(abfd,ptr,size) \
BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))

2.7.5.11 bfd_decode_symclass

Description
Return a character corresponding to the symbol class of symbol, or ’?’ for an unknown
class.
Synopsis

int bfd_decode_symclass (asymbol *symbol);

2.7.5.12 bfd_is_undefined_symclass

Description
Returns non-zero if the class symbol returned by bfd decode symclass represents an unde-
fined symbol. Returns zero otherwise.
Synopsis

bfd_boolean bfd_is_undefined_symclass (int symclass);

2.7.5.13 bfd_symbol_info

Description
Fill in the basic info about symbol that nm needs. Additional info may be added by the
back-ends after calling this function.
Synopsis

Chapter 2: BFD Front End 49

void bfd_symbol_info (asymbol *symbol, symbol_info *ret);

2.7.5.14 bfd_copy_private_symbol_data

Synopsis

bfd_boolean bfd_copy_private_symbol_data
(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);

Description
Copy private symbol information from isym in the BFD ibfd to the symbol osym in the
BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are:
• bfd_error_no_memory - Not enough memory exists to create private data for osec.

#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
BFD_SEND (obfd, _bfd_copy_private_symbol_data, \

(ibfd, isymbol, obfd, osymbol))

2.8 Archives

Description
An archive (or library) is just another BFD. It has a symbol table, although there’s not
much a user program will do with it.
The big difference between an archive BFD and an ordinary BFD is that the archive doesn’t
have sections. Instead it has a chain of BFDs that are considered its contents. These BFDs
can be manipulated like any other. The BFDs contained in an archive opened for reading
will all be opened for reading. You may put either input or output BFDs into an archive
opened for output; they will be handled correctly when the archive is closed.
Use bfd_openr_next_archived_file to step through the contents of an archive opened
for input. You don’t have to read the entire archive if you don’t want to! Read it until you
find what you want.
A BFD returned by bfd_openr_next_archived_file can be closed manually with bfd_
close. If you do not close it, then a second iteration through the members of an archive
may return the same BFD. If you close the archive BFD, then all the member BFDs will
automatically be closed as well.
Archive contents of output BFDs are chained through the archive_next pointer in a BFD.
The first one is findable through the archive_head slot of the archive. Set it with bfd_
set_archive_head (q.v.). A given BFD may be in only one open output archive at a
time.
As expected, the BFD archive code is more general than the archive code of any given
environment. BFD archives may contain files of different formats (e.g., a.out and coff) and
even different architectures. You may even place archives recursively into archives!
This can cause unexpected confusion, since some archive formats are more expressive than
others. For instance, Intel COFF archives can preserve long filenames; SunOS a.out archives
cannot. If you move a file from the first to the second format and back again, the filename
may be truncated. Likewise, different a.out environments have different conventions as
to how they truncate filenames, whether they preserve directory names in filenames, etc.
When interoperating with native tools, be sure your files are homogeneous.

Chapter 2: BFD Front End 50

Beware: most of these formats do not react well to the presence of spaces in filenames.
We do the best we can, but can’t always handle this case due to restrictions in the format
of archives. Many Unix utilities are braindead in regards to spaces and such in filenames
anyway, so this shouldn’t be much of a restriction.
Archives are supported in BFD in archive.c.

2.8.1 Archive functions

2.8.1.1 bfd_get_next_mapent

Synopsis

symindex bfd_get_next_mapent
(bfd *abfd, symindex previous, carsym **sym);

Description
Step through archive abfd’s symbol table (if it has one). Successively update sym with the
next symbol’s information, returning that symbol’s (internal) index into the symbol table.
Supply BFD_NO_MORE_SYMBOLS as the previous entry to get the first one; returns BFD_NO_
MORE_SYMBOLS when you’ve already got the last one.
A carsym is a canonical archive symbol. The only user-visible element is its name, a null-
terminated string.

2.8.1.2 bfd_set_archive_head

Synopsis

bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);

Description
Set the head of the chain of BFDs contained in the archive output to new head.

2.8.1.3 bfd_openr_next_archived_file

Synopsis

bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);

Description
Provided a BFD, archive, containing an archive and NULL, open an input BFD on the
first contained element and returns that. Subsequent calls should pass the archive and the
previous return value to return a created BFD to the next contained element. NULL is
returned when there are no more.

2.9 File formats

A format is a BFD concept of high level file contents type. The formats supported by BFD
are:
• bfd_object

The BFD may contain data, symbols, relocations and debug info.
• bfd_archive

The BFD contains other BFDs and an optional index.

Chapter 2: BFD Front End 51

• bfd_core

The BFD contains the result of an executable core dump.

2.9.1 File format functions

2.9.1.1 bfd_check_format

Synopsis

bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);

Description
Verify if the file attached to the BFD abfd is compatible with the format format (i.e., one
of bfd_object, bfd_archive or bfd_core).
If the BFD has been set to a specific target before the call, only the named target and
format combination is checked. If the target has not been set, or has been set to default,
then all the known target backends is interrogated to determine a match. If the default
target matches, it is used. If not, exactly one target must recognize the file, or an error
results.
The function returns TRUE on success, otherwise FALSE with one of the following error codes:
• bfd_error_invalid_operation - if format is not one of bfd_object, bfd_archive

or bfd_core.
• bfd_error_system_call - if an error occured during a read - even some file mismatches

can cause bfd error system calls.
• file_not_recognised - none of the backends recognised the file format.
• bfd_error_file_ambiguously_recognized - more than one backend recognised the

file format.

2.9.1.2 bfd_check_format_matches

Synopsis

bfd_boolean bfd_check_format_matches
(bfd *abfd, bfd_format format, char ***matching);

Description
Like bfd_check_format, except when it returns FALSE with bfd_errno set to bfd_error_
file_ambiguously_recognized. In that case, if matching is not NULL, it will be filled
in with a NULL-terminated list of the names of the formats that matched, allocated with
malloc. Then the user may choose a format and try again.
When done with the list that matching points to, the caller should free it.

2.9.1.3 bfd_set_format

Synopsis

bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);

Description
This function sets the file format of the BFD abfd to the format format. If the target set
in the BFD does not support the format requested, the format is invalid, or the BFD is not
open for writing, then an error occurs.

Chapter 2: BFD Front End 52

2.9.1.4 bfd_format_string

Synopsis

const char *bfd_format_string (bfd_format format);

Description
Return a pointer to a const string invalid, object, archive, core, or unknown, depending
upon the value of format.

2.10 Relocations

BFD maintains relocations in much the same way it maintains symbols: they are left alone
until required, then read in en-masse and translated into an internal form. A common
routine bfd_perform_relocation acts upon the canonical form to do the fixup.
Relocations are maintained on a per section basis, while symbols are maintained on a per
BFD basis.
All that a back end has to do to fit the BFD interface is to create a struct reloc_cache_
entry for each relocation in a particular section, and fill in the right bits of the structures.

2.10.1 typedef arelent

This is the structure of a relocation entry:

typedef enum bfd_reloc_status
{
/* No errors detected. */
bfd_reloc_ok,

/* The relocation was performed, but there was an overflow. */
bfd_reloc_overflow,

/* The address to relocate was not within the section supplied. */
bfd_reloc_outofrange,

/* Used by special functions. */
bfd_reloc_continue,

/* Unsupported relocation size requested. */
bfd_reloc_notsupported,

/* Unused. */
bfd_reloc_other,

/* The symbol to relocate against was undefined. */
bfd_reloc_undefined,

/* The relocation was performed, but may not be ok - presently
generated only when linking i960 coff files with i960 b.out
symbols. If this type is returned, the error_message argument

Chapter 2: BFD Front End 53

to bfd_perform_relocation will be set. */
bfd_reloc_dangerous
}
bfd_reloc_status_type;

typedef struct reloc_cache_entry
{
/* A pointer into the canonical table of pointers. */
struct bfd_symbol **sym_ptr_ptr;

/* offset in section. */
bfd_size_type address;

/* addend for relocation value. */
bfd_vma addend;

/* Pointer to how to perform the required relocation. */
reloc_howto_type *howto;

}
arelent;

Description
Here is a description of each of the fields within an arelent:

• sym_ptr_ptr

The symbol table pointer points to a pointer to the symbol associated with the relocation
request. It is the pointer into the table returned by the back end’s canonicalize_symtab
action. See Section 2.7 [Symbols], page 41. The symbol is referenced through a pointer
to a pointer so that tools like the linker can fix up all the symbols of the same name by
modifying only one pointer. The relocation routine looks in the symbol and uses the base
of the section the symbol is attached to and the value of the symbol as the initial relocation
offset. If the symbol pointer is zero, then the section provided is looked up.

• address

The address field gives the offset in bytes from the base of the section data which owns
the relocation record to the first byte of relocatable information. The actual data relocated
will be relative to this point; for example, a relocation type which modifies the bottom two
bytes of a four byte word would not touch the first byte pointed to in a big endian world.

• addend

The addend is a value provided by the back end to be added (!) to the relocation offset. Its
interpretation is dependent upon the howto. For example, on the 68k the code:

char foo[];
main()

{

Chapter 2: BFD Front End 54

return foo[0x12345678];
}

Could be compiled into:

linkw fp,#-4
moveb @#12345678,d0
extbl d0
unlk fp
rts

This could create a reloc pointing to foo, but leave the offset in the data, something like:

RELOCATION RECORDS FOR [.text]:
offset type value
00000006 32 _foo

00000000 4e56 fffc ; linkw fp,#-4
00000004 1039 1234 5678 ; moveb @#12345678,d0
0000000a 49c0 ; extbl d0
0000000c 4e5e ; unlk fp
0000000e 4e75 ; rts

Using coff and an 88k, some instructions don’t have enough space in them to represent the
full address range, and pointers have to be loaded in two parts. So you’d get something
like:

or.u r13,r0,hi16(_foo+0x12345678)
ld.b r2,r13,lo16(_foo+0x12345678)
jmp r1

This should create two relocs, both pointing to _foo, and with 0x12340000 in their addend
field. The data would consist of:

RELOCATION RECORDS FOR [.text]:
offset type value
00000002 HVRT16 _foo+0x12340000
00000006 LVRT16 _foo+0x12340000

00000000 5da05678 ; or.u r13,r0,0x5678
00000004 1c4d5678 ; ld.b r2,r13,0x5678
00000008 f400c001 ; jmp r1

The relocation routine digs out the value from the data, adds it to the addend to get the
original offset, and then adds the value of _foo. Note that all 32 bits have to be kept around
somewhere, to cope with carry from bit 15 to bit 16.

One further example is the sparc and the a.out format. The sparc has a similar problem
to the 88k, in that some instructions don’t have room for an entire offset, but on the sparc
the parts are created in odd sized lumps. The designers of the a.out format chose to not
use the data within the section for storing part of the offset; all the offset is kept within the
reloc. Anything in the data should be ignored.

save %sp,-112,%sp
sethi %hi(_foo+0x12345678),%g2

Chapter 2: BFD Front End 55

ldsb [%g2+%lo(_foo+0x12345678)],%i0
ret
restore

Both relocs contain a pointer to foo, and the offsets contain junk.
RELOCATION RECORDS FOR [.text]:
offset type value
00000004 HI22 _foo+0x12345678
00000008 LO10 _foo+0x12345678

00000000 9de3bf90 ; save %sp,-112,%sp
00000004 05000000 ; sethi %hi(_foo+0),%g2
00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
0000000c 81c7e008 ; ret
00000010 81e80000 ; restore

• howto

The howto field can be imagined as a relocation instruction. It is a pointer to a structure
which contains information on what to do with all of the other information in the reloc
record and data section. A back end would normally have a relocation instruction set and
turn relocations into pointers to the correct structure on input - but it would be possible
to create each howto field on demand.

2.10.1.1 enum complain_overflow

Indicates what sort of overflow checking should be done when performing a relocation.

enum complain_overflow
{
/* Do not complain on overflow. */
complain_overflow_dont,

/* Complain if the value overflows when considered as a signed
number one bit larger than the field. ie. A bitfield of N bits
is allowed to represent -2**n to 2**n-1. */

complain_overflow_bitfield,

/* Complain if the value overflows when considered as a signed
number. */

complain_overflow_signed,

/* Complain if the value overflows when considered as an
unsigned number. */

complain_overflow_unsigned
};

2.10.1.2 reloc_howto_type

The reloc_howto_type is a structure which contains all the information that libbfd needs
to know to tie up a back end’s data.

Chapter 2: BFD Front End 56

struct bfd_symbol; /* Forward declaration. */

struct reloc_howto_struct
{
/* The type field has mainly a documentary use - the back end can

do what it wants with it, though normally the back end’s
external idea of what a reloc number is stored
in this field. For example, a PC relative word relocation
in a coff environment has the type 023 - because that’s
what the outside world calls a R_PCRWORD reloc. */

unsigned int type;

/* The value the final relocation is shifted right by. This drops
unwanted data from the relocation. */

unsigned int rightshift;

/* The size of the item to be relocated. This is *not* a
power-of-two measure. To get the number of bytes operated
on by a type of relocation, use bfd_get_reloc_size. */

int size;

/* The number of bits in the item to be relocated. This is used
when doing overflow checking. */

unsigned int bitsize;

/* The relocation is relative to the field being relocated. */
bfd_boolean pc_relative;

/* The bit position of the reloc value in the destination.
The relocated value is left shifted by this amount. */

unsigned int bitpos;

/* What type of overflow error should be checked for when
relocating. */

enum complain_overflow complain_on_overflow;

/* If this field is non null, then the supplied function is
called rather than the normal function. This allows really
strange relocation methods to be accommodated (e.g., i960 callj
instructions). */

bfd_reloc_status_type (*special_function)
(bfd *, arelent *, struct bfd_symbol *, void *, asection *,
bfd *, char **);

/* The textual name of the relocation type. */
char *name;

Chapter 2: BFD Front End 57

/* Some formats record a relocation addend in the section contents
rather than with the relocation. For ELF formats this is the
distinction between USE_REL and USE_RELA (though the code checks
for USE_REL == 1/0). The value of this field is TRUE if the
addend is recorded with the section contents; when performing a
partial link (ld -r) the section contents (the data) will be
modified. The value of this field is FALSE if addends are
recorded with the relocation (in arelent.addend); when performing
a partial link the relocation will be modified.
All relocations for all ELF USE_RELA targets should set this field
to FALSE (values of TRUE should be looked on with suspicion).
However, the converse is not true: not all relocations of all ELF
USE_REL targets set this field to TRUE. Why this is so is peculiar
to each particular target. For relocs that aren’t used in partial
links (e.g. GOT stuff) it doesn’t matter what this is set to. */

bfd_boolean partial_inplace;

/* src_mask selects the part of the instruction (or data) to be used
in the relocation sum. If the target relocations don’t have an
addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
dst_mask to extract the addend from the section contents. If
relocations do have an addend in the reloc, eg. ELF USE_RELA, this
field should be zero. Non-zero values for ELF USE_RELA targets are
bogus as in those cases the value in the dst_mask part of the
section contents should be treated as garbage. */

bfd_vma src_mask;

/* dst_mask selects which parts of the instruction (or data) are
replaced with a relocated value. */

bfd_vma dst_mask;

/* When some formats create PC relative instructions, they leave
the value of the pc of the place being relocated in the offset
slot of the instruction, so that a PC relative relocation can
be made just by adding in an ordinary offset (e.g., sun3 a.out).
Some formats leave the displacement part of an instruction
empty (e.g., m88k bcs); this flag signals the fact. */

bfd_boolean pcrel_offset;
};

2.10.1.3 The HOWTO Macro

Description
The HOWTO define is horrible and will go away.

#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
{ (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }

Chapter 2: BFD Front End 58

Description
And will be replaced with the totally magic way. But for the moment, we are compatible,
so do it this way.

#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \

NAME, FALSE, 0, 0, IN)

Description
This is used to fill in an empty howto entry in an array.

#define EMPTY_HOWTO(C) \
HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \

NULL, FALSE, 0, 0, FALSE)

Description
Helper routine to turn a symbol into a relocation value.

#define HOWTO_PREPARE(relocation, symbol) \
{ \
if (symbol != NULL) \

{ \
if (bfd_is_com_section (symbol->section)) \

{ \
relocation = 0; \

} \
else \

{ \
relocation = symbol->value; \

} \
} \

}

2.10.1.4 bfd_get_reloc_size

Synopsis

unsigned int bfd_get_reloc_size (reloc_howto_type *);

Description
For a reloc howto type that operates on a fixed number of bytes, this returns the number
of bytes operated on.

2.10.1.5 arelent_chain

Description
How relocs are tied together in an asection:

typedef struct relent_chain
{
arelent relent;
struct relent_chain *next;

Chapter 2: BFD Front End 59

}
arelent_chain;

2.10.1.6 bfd_check_overflow

Synopsis

bfd_reloc_status_type bfd_check_overflow
(enum complain_overflow how,
unsigned int bitsize,
unsigned int rightshift,
unsigned int addrsize,
bfd_vma relocation);

Description
Perform overflow checking on relocation which has bitsize significant bits and will be shifted
right by rightshift bits, on a machine with addresses containing addrsize significant bits.
The result is either of bfd_reloc_ok or bfd_reloc_overflow.

2.10.1.7 bfd_perform_relocation

Synopsis

bfd_reloc_status_type bfd_perform_relocation
(bfd *abfd,
arelent *reloc_entry,
void *data,
asection *input_section,
bfd *output_bfd,
char **error_message);

Description
If output bfd is supplied to this function, the generated image will be relocatable; the
relocations are copied to the output file after they have been changed to reflect the new
state of the world. There are two ways of reflecting the results of partial linkage in an output
file: by modifying the output data in place, and by modifying the relocation record. Some
native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the
relocation type, so the addend has to go in the output data. This is no big deal since in
these formats the output data slot will always be big enough for the addend. Complex reloc
types with addends were invented to solve just this problem. The error message argument
is set to an error message if this return bfd_reloc_dangerous.

2.10.1.8 bfd_install_relocation

Synopsis

bfd_reloc_status_type bfd_install_relocation
(bfd *abfd,
arelent *reloc_entry,
void *data, bfd_vma data_start,
asection *input_section,
char **error_message);

Chapter 2: BFD Front End 60

Description
This looks remarkably like bfd_perform_relocation, except it does not expect that the
section contents have been filled in. I.e., it’s suitable for use when creating, rather than
applying a relocation.
For now, this function should be considered reserved for the assembler.

2.10.2 The howto manager

When an application wants to create a relocation, but doesn’t know what the target machine
might call it, it can find out by using this bit of code.

2.10.2.1 bfd_reloc_code_type

Description
The insides of a reloc code. The idea is that, eventually, there will be one enumerator for
every type of relocation we ever do. Pass one of these values to bfd_reloc_type_lookup,
and it’ll return a howto pointer.
This does mean that the application must determine the correct enumerator value; you
can’t get a howto pointer from a random set of attributes.
Here are the possible values for enum bfd_reloc_code_real:

BFD_RELOC_64
BFD_RELOC_32
BFD_RELOC_26
BFD_RELOC_24
BFD_RELOC_16
BFD_RELOC_14
BFD_RELOC_8

Basic absolute relocations of N bits.

BFD_RELOC_64_PCREL
BFD_RELOC_32_PCREL
BFD_RELOC_24_PCREL
BFD_RELOC_16_PCREL
BFD_RELOC_12_PCREL
BFD_RELOC_8_PCREL

PC-relative relocations. Sometimes these are relative to the address of the relocation
itself; sometimes they are relative to the start of the section containing the relocation.
It depends on the specific target.
The 24-bit relocation is used in some Intel 960 configurations.

BFD_RELOC_32_SECREL
Section relative relocations. Some targets need this for DWARF2.

BFD_RELOC_32_GOT_PCREL
BFD_RELOC_16_GOT_PCREL
BFD_RELOC_8_GOT_PCREL
BFD_RELOC_32_GOTOFF
BFD_RELOC_16_GOTOFF

Chapter 2: BFD Front End 61

BFD_RELOC_LO16_GOTOFF
BFD_RELOC_HI16_GOTOFF
BFD_RELOC_HI16_S_GOTOFF
BFD_RELOC_8_GOTOFF
BFD_RELOC_64_PLT_PCREL
BFD_RELOC_32_PLT_PCREL
BFD_RELOC_24_PLT_PCREL
BFD_RELOC_16_PLT_PCREL
BFD_RELOC_8_PLT_PCREL
BFD_RELOC_64_PLTOFF
BFD_RELOC_32_PLTOFF
BFD_RELOC_16_PLTOFF
BFD_RELOC_LO16_PLTOFF
BFD_RELOC_HI16_PLTOFF
BFD_RELOC_HI16_S_PLTOFF
BFD_RELOC_8_PLTOFF

For ELF.

BFD_RELOC_SIZE32
BFD_RELOC_SIZE64

Size relocations.

BFD_RELOC_68K_GLOB_DAT
BFD_RELOC_68K_JMP_SLOT
BFD_RELOC_68K_RELATIVE
BFD_RELOC_68K_TLS_GD32
BFD_RELOC_68K_TLS_GD16
BFD_RELOC_68K_TLS_GD8
BFD_RELOC_68K_TLS_LDM32
BFD_RELOC_68K_TLS_LDM16
BFD_RELOC_68K_TLS_LDM8
BFD_RELOC_68K_TLS_LDO32
BFD_RELOC_68K_TLS_LDO16
BFD_RELOC_68K_TLS_LDO8
BFD_RELOC_68K_TLS_IE32
BFD_RELOC_68K_TLS_IE16
BFD_RELOC_68K_TLS_IE8
BFD_RELOC_68K_TLS_LE32
BFD_RELOC_68K_TLS_LE16
BFD_RELOC_68K_TLS_LE8

Relocations used by 68K ELF.

BFD_RELOC_32_BASEREL
BFD_RELOC_16_BASEREL
BFD_RELOC_LO16_BASEREL
BFD_RELOC_HI16_BASEREL
BFD_RELOC_HI16_S_BASEREL
BFD_RELOC_8_BASEREL

Chapter 2: BFD Front End 62

BFD_RELOC_RVA
Linkage-table relative.

BFD_RELOC_8_FFnn
Absolute 8-bit relocation, but used to form an address like 0xFFnn.

BFD_RELOC_32_PCREL_S2
BFD_RELOC_16_PCREL_S2
BFD_RELOC_23_PCREL_S2

These PC-relative relocations are stored as word displacements – i.e., byte displace-
ments shifted right two bits. The 30-bit word displacement (<<32 PCREL S2>> –
32 bits, shifted 2) is used on the SPARC. (SPARC tools generally refer to this as
<<WDISP30>>.) The signed 16-bit displacement is used on the MIPS, and the 23-bit
displacement is used on the Alpha.

BFD_RELOC_HI22
BFD_RELOC_LO10

High 22 bits and low 10 bits of 32-bit value, placed into lower bits of the target word.
These are used on the SPARC.

BFD_RELOC_GPREL16
BFD_RELOC_GPREL32

For systems that allocate a Global Pointer register, these are displacements off that
register. These relocation types are handled specially, because the value the register
will have is decided relatively late.

BFD_RELOC_I960_CALLJ
Reloc types used for i960/b.out.

BFD_RELOC_NONE
BFD_RELOC_SPARC_WDISP22
BFD_RELOC_SPARC22
BFD_RELOC_SPARC13
BFD_RELOC_SPARC_GOT10
BFD_RELOC_SPARC_GOT13
BFD_RELOC_SPARC_GOT22
BFD_RELOC_SPARC_PC10
BFD_RELOC_SPARC_PC22
BFD_RELOC_SPARC_WPLT30
BFD_RELOC_SPARC_COPY
BFD_RELOC_SPARC_GLOB_DAT
BFD_RELOC_SPARC_JMP_SLOT
BFD_RELOC_SPARC_RELATIVE
BFD_RELOC_SPARC_UA16
BFD_RELOC_SPARC_UA32
BFD_RELOC_SPARC_UA64
BFD_RELOC_SPARC_GOTDATA_HIX22
BFD_RELOC_SPARC_GOTDATA_LOX10
BFD_RELOC_SPARC_GOTDATA_OP_HIX22

Chapter 2: BFD Front End 63

BFD_RELOC_SPARC_GOTDATA_OP_LOX10
BFD_RELOC_SPARC_GOTDATA_OP
BFD_RELOC_SPARC_JMP_IREL
BFD_RELOC_SPARC_IRELATIVE

SPARC ELF relocations. There is probably some overlap with other relocation types
already defined.

BFD_RELOC_SPARC_BASE13
BFD_RELOC_SPARC_BASE22

I think these are specific to SPARC a.out (e.g., Sun 4).

BFD_RELOC_SPARC_64
BFD_RELOC_SPARC_10
BFD_RELOC_SPARC_11
BFD_RELOC_SPARC_OLO10
BFD_RELOC_SPARC_HH22
BFD_RELOC_SPARC_HM10
BFD_RELOC_SPARC_LM22
BFD_RELOC_SPARC_PC_HH22
BFD_RELOC_SPARC_PC_HM10
BFD_RELOC_SPARC_PC_LM22
BFD_RELOC_SPARC_WDISP16
BFD_RELOC_SPARC_WDISP19
BFD_RELOC_SPARC_7
BFD_RELOC_SPARC_6
BFD_RELOC_SPARC_5
BFD_RELOC_SPARC_DISP64
BFD_RELOC_SPARC_PLT32
BFD_RELOC_SPARC_PLT64
BFD_RELOC_SPARC_HIX22
BFD_RELOC_SPARC_LOX10
BFD_RELOC_SPARC_H44
BFD_RELOC_SPARC_M44
BFD_RELOC_SPARC_L44
BFD_RELOC_SPARC_REGISTER
BFD_RELOC_SPARC_H34
BFD_RELOC_SPARC_SIZE32
BFD_RELOC_SPARC_SIZE64
BFD_RELOC_SPARC_WDISP10

SPARC64 relocations

BFD_RELOC_SPARC_REV32
SPARC little endian relocation

BFD_RELOC_SPARC_TLS_GD_HI22
BFD_RELOC_SPARC_TLS_GD_LO10
BFD_RELOC_SPARC_TLS_GD_ADD
BFD_RELOC_SPARC_TLS_GD_CALL

Chapter 2: BFD Front End 64

BFD_RELOC_SPARC_TLS_LDM_HI22
BFD_RELOC_SPARC_TLS_LDM_LO10
BFD_RELOC_SPARC_TLS_LDM_ADD
BFD_RELOC_SPARC_TLS_LDM_CALL
BFD_RELOC_SPARC_TLS_LDO_HIX22
BFD_RELOC_SPARC_TLS_LDO_LOX10
BFD_RELOC_SPARC_TLS_LDO_ADD
BFD_RELOC_SPARC_TLS_IE_HI22
BFD_RELOC_SPARC_TLS_IE_LO10
BFD_RELOC_SPARC_TLS_IE_LD
BFD_RELOC_SPARC_TLS_IE_LDX
BFD_RELOC_SPARC_TLS_IE_ADD
BFD_RELOC_SPARC_TLS_LE_HIX22
BFD_RELOC_SPARC_TLS_LE_LOX10
BFD_RELOC_SPARC_TLS_DTPMOD32
BFD_RELOC_SPARC_TLS_DTPMOD64
BFD_RELOC_SPARC_TLS_DTPOFF32
BFD_RELOC_SPARC_TLS_DTPOFF64
BFD_RELOC_SPARC_TLS_TPOFF32
BFD_RELOC_SPARC_TLS_TPOFF64

SPARC TLS relocations

BFD_RELOC_SPU_IMM7
BFD_RELOC_SPU_IMM8
BFD_RELOC_SPU_IMM10
BFD_RELOC_SPU_IMM10W
BFD_RELOC_SPU_IMM16
BFD_RELOC_SPU_IMM16W
BFD_RELOC_SPU_IMM18
BFD_RELOC_SPU_PCREL9a
BFD_RELOC_SPU_PCREL9b
BFD_RELOC_SPU_PCREL16
BFD_RELOC_SPU_LO16
BFD_RELOC_SPU_HI16
BFD_RELOC_SPU_PPU32
BFD_RELOC_SPU_PPU64
BFD_RELOC_SPU_ADD_PIC

SPU Relocations.

BFD_RELOC_ALPHA_GPDISP_HI16
Alpha ECOFF and ELF relocations. Some of these treat the symbol or "addend" in
some special way. For GPDISP HI16 ("gpdisp") relocations, the symbol is ignored
when writing; when reading, it will be the absolute section symbol. The addend is
the displacement in bytes of the "lda" instruction from the "ldah" instruction (which
is at the address of this reloc).

Chapter 2: BFD Front End 65

BFD_RELOC_ALPHA_GPDISP_LO16
For GPDISP LO16 ("ignore") relocations, the symbol is handled as with
GPDISP HI16 relocs. The addend is ignored when writing the relocations out, and
is filled in with the file’s GP value on reading, for convenience.

BFD_RELOC_ALPHA_GPDISP
The ELF GPDISP relocation is exactly the same as the GPDISP HI16 relocation
except that there is no accompanying GPDISP LO16 relocation.

BFD_RELOC_ALPHA_LITERAL
BFD_RELOC_ALPHA_ELF_LITERAL
BFD_RELOC_ALPHA_LITUSE

The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; the as-
sembler turns it into a LDQ instruction to load the address of the symbol, and then
fills in a register in the real instruction.
The LITERAL reloc, at the LDQ instruction, refers to the .lita section symbol. The
addend is ignored when writing, but is filled in with the file’s GP value on reading,
for convenience, as with the GPDISP LO16 reloc.
The ELF LITERAL reloc is somewhere between 16 GOTOFF and GPDISP LO16.
It should refer to the symbol to be referenced, as with 16 GOTOFF, but it generates
output not based on the position within the .got section, but relative to the GP value
chosen for the file during the final link stage.
The LITUSE reloc, on the instruction using the loaded address, gives information to
the linker that it might be able to use to optimize away some literal section refer-
ences. The symbol is ignored (read as the absolute section symbol), and the "addend"
indicates the type of instruction using the register: 1 - "memory" fmt insn 2 - byte-
manipulation (byte offset reg) 3 - jsr (target of branch)

BFD_RELOC_ALPHA_HINT
The HINT relocation indicates a value that should be filled into the "hint" field of a
jmp/jsr/ret instruction, for possible branch- prediction logic which may be provided
on some processors.

BFD_RELOC_ALPHA_LINKAGE
The LINKAGE relocation outputs a linkage pair in the object file, which is filled by
the linker.

BFD_RELOC_ALPHA_CODEADDR
The CODEADDR relocation outputs a STO CA in the object file, which is filled by
the linker.

BFD_RELOC_ALPHA_GPREL_HI16
BFD_RELOC_ALPHA_GPREL_LO16

The GPREL HI/LO relocations together form a 32-bit offset from the GP register.

BFD_RELOC_ALPHA_BRSGP
Like BFD RELOC 23 PCREL S2, except that the source and target must share a
common GP, and the target address is adjusted for STO ALPHA STD GPLOAD.

Chapter 2: BFD Front End 66

BFD_RELOC_ALPHA_NOP
The NOP relocation outputs a NOP if the longword displacement between two pro-
cedure entry points is < 2^21.

BFD_RELOC_ALPHA_BSR
The BSR relocation outputs a BSR if the longword displacement between two proce-
dure entry points is < 2^21.

BFD_RELOC_ALPHA_LDA
The LDA relocation outputs a LDA if the longword displacement between two pro-
cedure entry points is < 2^16.

BFD_RELOC_ALPHA_BOH
The BOH relocation outputs a BSR if the longword displacement between two pro-
cedure entry points is < 2^21, or else a hint.

BFD_RELOC_ALPHA_TLSGD
BFD_RELOC_ALPHA_TLSLDM
BFD_RELOC_ALPHA_DTPMOD64
BFD_RELOC_ALPHA_GOTDTPREL16
BFD_RELOC_ALPHA_DTPREL64
BFD_RELOC_ALPHA_DTPREL_HI16
BFD_RELOC_ALPHA_DTPREL_LO16
BFD_RELOC_ALPHA_DTPREL16
BFD_RELOC_ALPHA_GOTTPREL16
BFD_RELOC_ALPHA_TPREL64
BFD_RELOC_ALPHA_TPREL_HI16
BFD_RELOC_ALPHA_TPREL_LO16
BFD_RELOC_ALPHA_TPREL16

Alpha thread-local storage relocations.

BFD_RELOC_MIPS_JMP
BFD_RELOC_MICROMIPS_JMP

The MIPS jump instruction.

BFD_RELOC_MIPS16_JMP
The MIPS16 jump instruction.

BFD_RELOC_MIPS16_GPREL
MIPS16 GP relative reloc.

BFD_RELOC_HI16
High 16 bits of 32-bit value; simple reloc.

BFD_RELOC_HI16_S
High 16 bits of 32-bit value but the low 16 bits will be sign extended and added to
form the final result. If the low 16 bits form a negative number, we need to add one
to the high value to compensate for the borrow when the low bits are added.

BFD_RELOC_LO16
Low 16 bits.

Chapter 2: BFD Front End 67

BFD_RELOC_HI16_PCREL
High 16 bits of 32-bit pc-relative value

BFD_RELOC_HI16_S_PCREL
High 16 bits of 32-bit pc-relative value, adjusted

BFD_RELOC_LO16_PCREL
Low 16 bits of pc-relative value

BFD_RELOC_MIPS16_GOT16
BFD_RELOC_MIPS16_CALL16

Equivalent of BFD RELOC MIPS *, but with the MIPS16 layout of 16-bit immediate
fields

BFD_RELOC_MIPS16_HI16
MIPS16 high 16 bits of 32-bit value.

BFD_RELOC_MIPS16_HI16_S
MIPS16 high 16 bits of 32-bit value but the low 16 bits will be sign extended and
added to form the final result. If the low 16 bits form a negative number, we need to
add one to the high value to compensate for the borrow when the low bits are added.

BFD_RELOC_MIPS16_LO16
MIPS16 low 16 bits.

BFD_RELOC_MIPS16_TLS_GD
BFD_RELOC_MIPS16_TLS_LDM
BFD_RELOC_MIPS16_TLS_DTPREL_HI16
BFD_RELOC_MIPS16_TLS_DTPREL_LO16
BFD_RELOC_MIPS16_TLS_GOTTPREL
BFD_RELOC_MIPS16_TLS_TPREL_HI16
BFD_RELOC_MIPS16_TLS_TPREL_LO16

MIPS16 TLS relocations

BFD_RELOC_MIPS_LITERAL
BFD_RELOC_MICROMIPS_LITERAL

Relocation against a MIPS literal section.

BFD_RELOC_MICROMIPS_7_PCREL_S1
BFD_RELOC_MICROMIPS_10_PCREL_S1
BFD_RELOC_MICROMIPS_16_PCREL_S1

microMIPS PC-relative relocations.

BFD_RELOC_MIPS_21_PCREL_S2
BFD_RELOC_MIPS_26_PCREL_S2
BFD_RELOC_MIPS_18_PCREL_S3
BFD_RELOC_MIPS_19_PCREL_S2

MIPS PC-relative relocations.

Chapter 2: BFD Front End 68

BFD_RELOC_MICROMIPS_GPREL16
BFD_RELOC_MICROMIPS_HI16
BFD_RELOC_MICROMIPS_HI16_S
BFD_RELOC_MICROMIPS_LO16

microMIPS versions of generic BFD relocs.

BFD_RELOC_MIPS_GOT16
BFD_RELOC_MICROMIPS_GOT16
BFD_RELOC_MIPS_CALL16
BFD_RELOC_MICROMIPS_CALL16
BFD_RELOC_MIPS_GOT_HI16
BFD_RELOC_MICROMIPS_GOT_HI16
BFD_RELOC_MIPS_GOT_LO16
BFD_RELOC_MICROMIPS_GOT_LO16
BFD_RELOC_MIPS_CALL_HI16
BFD_RELOC_MICROMIPS_CALL_HI16
BFD_RELOC_MIPS_CALL_LO16
BFD_RELOC_MICROMIPS_CALL_LO16
BFD_RELOC_MIPS_SUB
BFD_RELOC_MICROMIPS_SUB
BFD_RELOC_MIPS_GOT_PAGE
BFD_RELOC_MICROMIPS_GOT_PAGE
BFD_RELOC_MIPS_GOT_OFST
BFD_RELOC_MICROMIPS_GOT_OFST
BFD_RELOC_MIPS_GOT_DISP
BFD_RELOC_MICROMIPS_GOT_DISP
BFD_RELOC_MIPS_SHIFT5
BFD_RELOC_MIPS_SHIFT6
BFD_RELOC_MIPS_INSERT_A
BFD_RELOC_MIPS_INSERT_B
BFD_RELOC_MIPS_DELETE
BFD_RELOC_MIPS_HIGHEST
BFD_RELOC_MICROMIPS_HIGHEST
BFD_RELOC_MIPS_HIGHER
BFD_RELOC_MICROMIPS_HIGHER
BFD_RELOC_MIPS_SCN_DISP
BFD_RELOC_MICROMIPS_SCN_DISP
BFD_RELOC_MIPS_REL16
BFD_RELOC_MIPS_RELGOT
BFD_RELOC_MIPS_JALR
BFD_RELOC_MICROMIPS_JALR
BFD_RELOC_MIPS_TLS_DTPMOD32
BFD_RELOC_MIPS_TLS_DTPREL32
BFD_RELOC_MIPS_TLS_DTPMOD64
BFD_RELOC_MIPS_TLS_DTPREL64
BFD_RELOC_MIPS_TLS_GD
BFD_RELOC_MICROMIPS_TLS_GD

Chapter 2: BFD Front End 69

BFD_RELOC_MIPS_TLS_LDM
BFD_RELOC_MICROMIPS_TLS_LDM
BFD_RELOC_MIPS_TLS_DTPREL_HI16
BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16
BFD_RELOC_MIPS_TLS_DTPREL_LO16
BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16
BFD_RELOC_MIPS_TLS_GOTTPREL
BFD_RELOC_MICROMIPS_TLS_GOTTPREL
BFD_RELOC_MIPS_TLS_TPREL32
BFD_RELOC_MIPS_TLS_TPREL64
BFD_RELOC_MIPS_TLS_TPREL_HI16
BFD_RELOC_MICROMIPS_TLS_TPREL_HI16
BFD_RELOC_MIPS_TLS_TPREL_LO16
BFD_RELOC_MICROMIPS_TLS_TPREL_LO16
BFD_RELOC_MIPS_EH

MIPS ELF relocations.

BFD_RELOC_MIPS_COPY
BFD_RELOC_MIPS_JUMP_SLOT

MIPS ELF relocations (VxWorks and PLT extensions).

BFD_RELOC_MOXIE_10_PCREL
Moxie ELF relocations.

BFD_RELOC_FRV_LABEL16
BFD_RELOC_FRV_LABEL24
BFD_RELOC_FRV_LO16
BFD_RELOC_FRV_HI16
BFD_RELOC_FRV_GPREL12
BFD_RELOC_FRV_GPRELU12
BFD_RELOC_FRV_GPREL32
BFD_RELOC_FRV_GPRELHI
BFD_RELOC_FRV_GPRELLO
BFD_RELOC_FRV_GOT12
BFD_RELOC_FRV_GOTHI
BFD_RELOC_FRV_GOTLO
BFD_RELOC_FRV_FUNCDESC
BFD_RELOC_FRV_FUNCDESC_GOT12
BFD_RELOC_FRV_FUNCDESC_GOTHI
BFD_RELOC_FRV_FUNCDESC_GOTLO
BFD_RELOC_FRV_FUNCDESC_VALUE
BFD_RELOC_FRV_FUNCDESC_GOTOFF12
BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
BFD_RELOC_FRV_GOTOFF12
BFD_RELOC_FRV_GOTOFFHI
BFD_RELOC_FRV_GOTOFFLO
BFD_RELOC_FRV_GETTLSOFF

Chapter 2: BFD Front End 70

BFD_RELOC_FRV_TLSDESC_VALUE
BFD_RELOC_FRV_GOTTLSDESC12
BFD_RELOC_FRV_GOTTLSDESCHI
BFD_RELOC_FRV_GOTTLSDESCLO
BFD_RELOC_FRV_TLSMOFF12
BFD_RELOC_FRV_TLSMOFFHI
BFD_RELOC_FRV_TLSMOFFLO
BFD_RELOC_FRV_GOTTLSOFF12
BFD_RELOC_FRV_GOTTLSOFFHI
BFD_RELOC_FRV_GOTTLSOFFLO
BFD_RELOC_FRV_TLSOFF
BFD_RELOC_FRV_TLSDESC_RELAX
BFD_RELOC_FRV_GETTLSOFF_RELAX
BFD_RELOC_FRV_TLSOFF_RELAX
BFD_RELOC_FRV_TLSMOFF

Fujitsu Frv Relocations.

BFD_RELOC_MN10300_GOTOFF24
This is a 24bit GOT-relative reloc for the mn10300.

BFD_RELOC_MN10300_GOT32
This is a 32bit GOT-relative reloc for the mn10300, offset by two bytes in the instruc-
tion.

BFD_RELOC_MN10300_GOT24
This is a 24bit GOT-relative reloc for the mn10300, offset by two bytes in the instruc-
tion.

BFD_RELOC_MN10300_GOT16
This is a 16bit GOT-relative reloc for the mn10300, offset by two bytes in the instruc-
tion.

BFD_RELOC_MN10300_COPY
Copy symbol at runtime.

BFD_RELOC_MN10300_GLOB_DAT
Create GOT entry.

BFD_RELOC_MN10300_JMP_SLOT
Create PLT entry.

BFD_RELOC_MN10300_RELATIVE
Adjust by program base.

BFD_RELOC_MN10300_SYM_DIFF
Together with another reloc targeted at the same location, allows for a value that is
the difference of two symbols in the same section.

BFD_RELOC_MN10300_ALIGN
The addend of this reloc is an alignment power that must be honoured at the offset’s
location, regardless of linker relaxation.

Chapter 2: BFD Front End 71

BFD_RELOC_MN10300_TLS_GD
BFD_RELOC_MN10300_TLS_LD
BFD_RELOC_MN10300_TLS_LDO
BFD_RELOC_MN10300_TLS_GOTIE
BFD_RELOC_MN10300_TLS_IE
BFD_RELOC_MN10300_TLS_LE
BFD_RELOC_MN10300_TLS_DTPMOD
BFD_RELOC_MN10300_TLS_DTPOFF
BFD_RELOC_MN10300_TLS_TPOFF

Various TLS-related relocations.

BFD_RELOC_MN10300_32_PCREL
This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the instruction.

BFD_RELOC_MN10300_16_PCREL
This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the instruction.

BFD_RELOC_386_GOT32
BFD_RELOC_386_PLT32
BFD_RELOC_386_COPY
BFD_RELOC_386_GLOB_DAT
BFD_RELOC_386_JUMP_SLOT
BFD_RELOC_386_RELATIVE
BFD_RELOC_386_GOTOFF
BFD_RELOC_386_GOTPC
BFD_RELOC_386_TLS_TPOFF
BFD_RELOC_386_TLS_IE
BFD_RELOC_386_TLS_GOTIE
BFD_RELOC_386_TLS_LE
BFD_RELOC_386_TLS_GD
BFD_RELOC_386_TLS_LDM
BFD_RELOC_386_TLS_LDO_32
BFD_RELOC_386_TLS_IE_32
BFD_RELOC_386_TLS_LE_32
BFD_RELOC_386_TLS_DTPMOD32
BFD_RELOC_386_TLS_DTPOFF32
BFD_RELOC_386_TLS_TPOFF32
BFD_RELOC_386_TLS_GOTDESC
BFD_RELOC_386_TLS_DESC_CALL
BFD_RELOC_386_TLS_DESC
BFD_RELOC_386_IRELATIVE

i386/elf relocations

BFD_RELOC_X86_64_GOT32
BFD_RELOC_X86_64_PLT32
BFD_RELOC_X86_64_COPY
BFD_RELOC_X86_64_GLOB_DAT
BFD_RELOC_X86_64_JUMP_SLOT

Chapter 2: BFD Front End 72

BFD_RELOC_X86_64_RELATIVE
BFD_RELOC_X86_64_GOTPCREL
BFD_RELOC_X86_64_32S
BFD_RELOC_X86_64_DTPMOD64
BFD_RELOC_X86_64_DTPOFF64
BFD_RELOC_X86_64_TPOFF64
BFD_RELOC_X86_64_TLSGD
BFD_RELOC_X86_64_TLSLD
BFD_RELOC_X86_64_DTPOFF32
BFD_RELOC_X86_64_GOTTPOFF
BFD_RELOC_X86_64_TPOFF32
BFD_RELOC_X86_64_GOTOFF64
BFD_RELOC_X86_64_GOTPC32
BFD_RELOC_X86_64_GOT64
BFD_RELOC_X86_64_GOTPCREL64
BFD_RELOC_X86_64_GOTPC64
BFD_RELOC_X86_64_GOTPLT64
BFD_RELOC_X86_64_PLTOFF64
BFD_RELOC_X86_64_GOTPC32_TLSDESC
BFD_RELOC_X86_64_TLSDESC_CALL
BFD_RELOC_X86_64_TLSDESC
BFD_RELOC_X86_64_IRELATIVE
BFD_RELOC_X86_64_PC32_BND
BFD_RELOC_X86_64_PLT32_BND

x86-64/elf relocations

BFD_RELOC_NS32K_IMM_8
BFD_RELOC_NS32K_IMM_16
BFD_RELOC_NS32K_IMM_32
BFD_RELOC_NS32K_IMM_8_PCREL
BFD_RELOC_NS32K_IMM_16_PCREL
BFD_RELOC_NS32K_IMM_32_PCREL
BFD_RELOC_NS32K_DISP_8
BFD_RELOC_NS32K_DISP_16
BFD_RELOC_NS32K_DISP_32
BFD_RELOC_NS32K_DISP_8_PCREL
BFD_RELOC_NS32K_DISP_16_PCREL
BFD_RELOC_NS32K_DISP_32_PCREL

ns32k relocations

BFD_RELOC_PDP11_DISP_8_PCREL
BFD_RELOC_PDP11_DISP_6_PCREL

PDP11 relocations

BFD_RELOC_PJ_CODE_HI16
BFD_RELOC_PJ_CODE_LO16
BFD_RELOC_PJ_CODE_DIR16
BFD_RELOC_PJ_CODE_DIR32

Chapter 2: BFD Front End 73

BFD_RELOC_PJ_CODE_REL16
BFD_RELOC_PJ_CODE_REL32

Picojava relocs. Not all of these appear in object files.

BFD_RELOC_PPC_B26
BFD_RELOC_PPC_BA26
BFD_RELOC_PPC_TOC16
BFD_RELOC_PPC_B16
BFD_RELOC_PPC_B16_BRTAKEN
BFD_RELOC_PPC_B16_BRNTAKEN
BFD_RELOC_PPC_BA16
BFD_RELOC_PPC_BA16_BRTAKEN
BFD_RELOC_PPC_BA16_BRNTAKEN
BFD_RELOC_PPC_COPY
BFD_RELOC_PPC_GLOB_DAT
BFD_RELOC_PPC_JMP_SLOT
BFD_RELOC_PPC_RELATIVE
BFD_RELOC_PPC_LOCAL24PC
BFD_RELOC_PPC_EMB_NADDR32
BFD_RELOC_PPC_EMB_NADDR16
BFD_RELOC_PPC_EMB_NADDR16_LO
BFD_RELOC_PPC_EMB_NADDR16_HI
BFD_RELOC_PPC_EMB_NADDR16_HA
BFD_RELOC_PPC_EMB_SDAI16
BFD_RELOC_PPC_EMB_SDA2I16
BFD_RELOC_PPC_EMB_SDA2REL
BFD_RELOC_PPC_EMB_SDA21
BFD_RELOC_PPC_EMB_MRKREF
BFD_RELOC_PPC_EMB_RELSEC16
BFD_RELOC_PPC_EMB_RELST_LO
BFD_RELOC_PPC_EMB_RELST_HI
BFD_RELOC_PPC_EMB_RELST_HA
BFD_RELOC_PPC_EMB_BIT_FLD
BFD_RELOC_PPC_EMB_RELSDA
BFD_RELOC_PPC_VLE_REL8
BFD_RELOC_PPC_VLE_REL15
BFD_RELOC_PPC_VLE_REL24
BFD_RELOC_PPC_VLE_LO16A
BFD_RELOC_PPC_VLE_LO16D
BFD_RELOC_PPC_VLE_HI16A
BFD_RELOC_PPC_VLE_HI16D
BFD_RELOC_PPC_VLE_HA16A
BFD_RELOC_PPC_VLE_HA16D
BFD_RELOC_PPC_VLE_SDA21
BFD_RELOC_PPC_VLE_SDA21_LO
BFD_RELOC_PPC_VLE_SDAREL_LO16A
BFD_RELOC_PPC_VLE_SDAREL_LO16D

Chapter 2: BFD Front End 74

BFD_RELOC_PPC_VLE_SDAREL_HI16A
BFD_RELOC_PPC_VLE_SDAREL_HI16D
BFD_RELOC_PPC_VLE_SDAREL_HA16A
BFD_RELOC_PPC_VLE_SDAREL_HA16D
BFD_RELOC_PPC64_HIGHER
BFD_RELOC_PPC64_HIGHER_S
BFD_RELOC_PPC64_HIGHEST
BFD_RELOC_PPC64_HIGHEST_S
BFD_RELOC_PPC64_TOC16_LO
BFD_RELOC_PPC64_TOC16_HI
BFD_RELOC_PPC64_TOC16_HA
BFD_RELOC_PPC64_TOC
BFD_RELOC_PPC64_PLTGOT16
BFD_RELOC_PPC64_PLTGOT16_LO
BFD_RELOC_PPC64_PLTGOT16_HI
BFD_RELOC_PPC64_PLTGOT16_HA
BFD_RELOC_PPC64_ADDR16_DS
BFD_RELOC_PPC64_ADDR16_LO_DS
BFD_RELOC_PPC64_GOT16_DS
BFD_RELOC_PPC64_GOT16_LO_DS
BFD_RELOC_PPC64_PLT16_LO_DS
BFD_RELOC_PPC64_SECTOFF_DS
BFD_RELOC_PPC64_SECTOFF_LO_DS
BFD_RELOC_PPC64_TOC16_DS
BFD_RELOC_PPC64_TOC16_LO_DS
BFD_RELOC_PPC64_PLTGOT16_DS
BFD_RELOC_PPC64_PLTGOT16_LO_DS
BFD_RELOC_PPC64_ADDR16_HIGH
BFD_RELOC_PPC64_ADDR16_HIGHA
BFD_RELOC_PPC64_ADDR64_LOCAL

Power(rs6000) and PowerPC relocations.

BFD_RELOC_PPC_TLS
BFD_RELOC_PPC_TLSGD
BFD_RELOC_PPC_TLSLD
BFD_RELOC_PPC_DTPMOD
BFD_RELOC_PPC_TPREL16
BFD_RELOC_PPC_TPREL16_LO
BFD_RELOC_PPC_TPREL16_HI
BFD_RELOC_PPC_TPREL16_HA
BFD_RELOC_PPC_TPREL
BFD_RELOC_PPC_DTPREL16
BFD_RELOC_PPC_DTPREL16_LO
BFD_RELOC_PPC_DTPREL16_HI
BFD_RELOC_PPC_DTPREL16_HA
BFD_RELOC_PPC_DTPREL
BFD_RELOC_PPC_GOT_TLSGD16

Chapter 2: BFD Front End 75

BFD_RELOC_PPC_GOT_TLSGD16_LO
BFD_RELOC_PPC_GOT_TLSGD16_HI
BFD_RELOC_PPC_GOT_TLSGD16_HA
BFD_RELOC_PPC_GOT_TLSLD16
BFD_RELOC_PPC_GOT_TLSLD16_LO
BFD_RELOC_PPC_GOT_TLSLD16_HI
BFD_RELOC_PPC_GOT_TLSLD16_HA
BFD_RELOC_PPC_GOT_TPREL16
BFD_RELOC_PPC_GOT_TPREL16_LO
BFD_RELOC_PPC_GOT_TPREL16_HI
BFD_RELOC_PPC_GOT_TPREL16_HA
BFD_RELOC_PPC_GOT_DTPREL16
BFD_RELOC_PPC_GOT_DTPREL16_LO
BFD_RELOC_PPC_GOT_DTPREL16_HI
BFD_RELOC_PPC_GOT_DTPREL16_HA
BFD_RELOC_PPC64_TPREL16_DS
BFD_RELOC_PPC64_TPREL16_LO_DS
BFD_RELOC_PPC64_TPREL16_HIGHER
BFD_RELOC_PPC64_TPREL16_HIGHERA
BFD_RELOC_PPC64_TPREL16_HIGHEST
BFD_RELOC_PPC64_TPREL16_HIGHESTA
BFD_RELOC_PPC64_DTPREL16_DS
BFD_RELOC_PPC64_DTPREL16_LO_DS
BFD_RELOC_PPC64_DTPREL16_HIGHER
BFD_RELOC_PPC64_DTPREL16_HIGHERA
BFD_RELOC_PPC64_DTPREL16_HIGHEST
BFD_RELOC_PPC64_DTPREL16_HIGHESTA
BFD_RELOC_PPC64_TPREL16_HIGH
BFD_RELOC_PPC64_TPREL16_HIGHA
BFD_RELOC_PPC64_DTPREL16_HIGH
BFD_RELOC_PPC64_DTPREL16_HIGHA

PowerPC and PowerPC64 thread-local storage relocations.

BFD_RELOC_I370_D12
IBM 370/390 relocations

BFD_RELOC_CTOR
The type of reloc used to build a constructor table - at the moment probably a 32 bit
wide absolute relocation, but the target can choose. It generally does map to one of
the other relocation types.

BFD_RELOC_ARM_PCREL_BRANCH
ARM 26 bit pc-relative branch. The lowest two bits must be zero and are not stored
in the instruction.

BFD_RELOC_ARM_PCREL_BLX
ARM 26 bit pc-relative branch. The lowest bit must be zero and is not stored in the
instruction. The 2nd lowest bit comes from a 1 bit field in the instruction.

Chapter 2: BFD Front End 76

BFD_RELOC_THUMB_PCREL_BLX
Thumb 22 bit pc-relative branch. The lowest bit must be zero and is not stored in
the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction.

BFD_RELOC_ARM_PCREL_CALL
ARM 26-bit pc-relative branch for an unconditional BL or BLX instruction.

BFD_RELOC_ARM_PCREL_JUMP
ARM 26-bit pc-relative branch for B or conditional BL instruction.

BFD_RELOC_THUMB_PCREL_BRANCH7
BFD_RELOC_THUMB_PCREL_BRANCH9
BFD_RELOC_THUMB_PCREL_BRANCH12
BFD_RELOC_THUMB_PCREL_BRANCH20
BFD_RELOC_THUMB_PCREL_BRANCH23
BFD_RELOC_THUMB_PCREL_BRANCH25

Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The lowest bit must
be zero and is not stored in the instruction. Note that the corresponding ELF
R ARM THM JUMPnn constant has an "nn" one smaller in all cases. Note fur-
ther that BRANCH23 corresponds to R ARM THM CALL.

BFD_RELOC_ARM_OFFSET_IMM
12-bit immediate offset, used in ARM-format ldr and str instructions.

BFD_RELOC_ARM_THUMB_OFFSET
5-bit immediate offset, used in Thumb-format ldr and str instructions.

BFD_RELOC_ARM_TARGET1
Pc-relative or absolute relocation depending on target. Used for entries in .init array
sections.

BFD_RELOC_ARM_ROSEGREL32
Read-only segment base relative address.

BFD_RELOC_ARM_SBREL32
Data segment base relative address.

BFD_RELOC_ARM_TARGET2
This reloc is used for references to RTTI data from exception handling tables. The
actual definition depends on the target. It may be a pc-relative or some form of
GOT-indirect relocation.

BFD_RELOC_ARM_PREL31
31-bit PC relative address.

BFD_RELOC_ARM_MOVW
BFD_RELOC_ARM_MOVT
BFD_RELOC_ARM_MOVW_PCREL
BFD_RELOC_ARM_MOVT_PCREL
BFD_RELOC_ARM_THUMB_MOVW
BFD_RELOC_ARM_THUMB_MOVT

Chapter 2: BFD Front End 77

BFD_RELOC_ARM_THUMB_MOVW_PCREL
BFD_RELOC_ARM_THUMB_MOVT_PCREL

Low and High halfword relocations for MOVW and MOVT instructions.

BFD_RELOC_ARM_JUMP_SLOT
BFD_RELOC_ARM_GLOB_DAT
BFD_RELOC_ARM_GOT32
BFD_RELOC_ARM_PLT32
BFD_RELOC_ARM_RELATIVE
BFD_RELOC_ARM_GOTOFF
BFD_RELOC_ARM_GOTPC
BFD_RELOC_ARM_GOT_PREL

Relocations for setting up GOTs and PLTs for shared libraries.

BFD_RELOC_ARM_TLS_GD32
BFD_RELOC_ARM_TLS_LDO32
BFD_RELOC_ARM_TLS_LDM32
BFD_RELOC_ARM_TLS_DTPOFF32
BFD_RELOC_ARM_TLS_DTPMOD32
BFD_RELOC_ARM_TLS_TPOFF32
BFD_RELOC_ARM_TLS_IE32
BFD_RELOC_ARM_TLS_LE32
BFD_RELOC_ARM_TLS_GOTDESC
BFD_RELOC_ARM_TLS_CALL
BFD_RELOC_ARM_THM_TLS_CALL
BFD_RELOC_ARM_TLS_DESCSEQ
BFD_RELOC_ARM_THM_TLS_DESCSEQ
BFD_RELOC_ARM_TLS_DESC

ARM thread-local storage relocations.

BFD_RELOC_ARM_ALU_PC_G0_NC
BFD_RELOC_ARM_ALU_PC_G0
BFD_RELOC_ARM_ALU_PC_G1_NC
BFD_RELOC_ARM_ALU_PC_G1
BFD_RELOC_ARM_ALU_PC_G2
BFD_RELOC_ARM_LDR_PC_G0
BFD_RELOC_ARM_LDR_PC_G1
BFD_RELOC_ARM_LDR_PC_G2
BFD_RELOC_ARM_LDRS_PC_G0
BFD_RELOC_ARM_LDRS_PC_G1
BFD_RELOC_ARM_LDRS_PC_G2
BFD_RELOC_ARM_LDC_PC_G0
BFD_RELOC_ARM_LDC_PC_G1
BFD_RELOC_ARM_LDC_PC_G2
BFD_RELOC_ARM_ALU_SB_G0_NC
BFD_RELOC_ARM_ALU_SB_G0
BFD_RELOC_ARM_ALU_SB_G1_NC
BFD_RELOC_ARM_ALU_SB_G1

Chapter 2: BFD Front End 78

BFD_RELOC_ARM_ALU_SB_G2
BFD_RELOC_ARM_LDR_SB_G0
BFD_RELOC_ARM_LDR_SB_G1
BFD_RELOC_ARM_LDR_SB_G2
BFD_RELOC_ARM_LDRS_SB_G0
BFD_RELOC_ARM_LDRS_SB_G1
BFD_RELOC_ARM_LDRS_SB_G2
BFD_RELOC_ARM_LDC_SB_G0
BFD_RELOC_ARM_LDC_SB_G1
BFD_RELOC_ARM_LDC_SB_G2

ARM group relocations.

BFD_RELOC_ARM_V4BX
Annotation of BX instructions.

BFD_RELOC_ARM_IRELATIVE
ARM support for STT GNU IFUNC.

BFD_RELOC_ARM_IMMEDIATE
BFD_RELOC_ARM_ADRL_IMMEDIATE
BFD_RELOC_ARM_T32_IMMEDIATE
BFD_RELOC_ARM_T32_ADD_IMM
BFD_RELOC_ARM_T32_IMM12
BFD_RELOC_ARM_T32_ADD_PC12
BFD_RELOC_ARM_SHIFT_IMM
BFD_RELOC_ARM_SMC
BFD_RELOC_ARM_HVC
BFD_RELOC_ARM_SWI
BFD_RELOC_ARM_MULTI
BFD_RELOC_ARM_CP_OFF_IMM
BFD_RELOC_ARM_CP_OFF_IMM_S2
BFD_RELOC_ARM_T32_CP_OFF_IMM
BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
BFD_RELOC_ARM_ADR_IMM
BFD_RELOC_ARM_LDR_IMM
BFD_RELOC_ARM_LITERAL
BFD_RELOC_ARM_IN_POOL
BFD_RELOC_ARM_OFFSET_IMM8
BFD_RELOC_ARM_T32_OFFSET_U8
BFD_RELOC_ARM_T32_OFFSET_IMM
BFD_RELOC_ARM_HWLITERAL
BFD_RELOC_ARM_THUMB_ADD
BFD_RELOC_ARM_THUMB_IMM
BFD_RELOC_ARM_THUMB_SHIFT

These relocs are only used within the ARM assembler. They are not (at present)
written to any object files.

BFD_RELOC_SH_PCDISP8BY2
BFD_RELOC_SH_PCDISP12BY2

Chapter 2: BFD Front End 79

BFD_RELOC_SH_IMM3
BFD_RELOC_SH_IMM3U
BFD_RELOC_SH_DISP12
BFD_RELOC_SH_DISP12BY2
BFD_RELOC_SH_DISP12BY4
BFD_RELOC_SH_DISP12BY8
BFD_RELOC_SH_DISP20
BFD_RELOC_SH_DISP20BY8
BFD_RELOC_SH_IMM4
BFD_RELOC_SH_IMM4BY2
BFD_RELOC_SH_IMM4BY4
BFD_RELOC_SH_IMM8
BFD_RELOC_SH_IMM8BY2
BFD_RELOC_SH_IMM8BY4
BFD_RELOC_SH_PCRELIMM8BY2
BFD_RELOC_SH_PCRELIMM8BY4
BFD_RELOC_SH_SWITCH16
BFD_RELOC_SH_SWITCH32
BFD_RELOC_SH_USES
BFD_RELOC_SH_COUNT
BFD_RELOC_SH_ALIGN
BFD_RELOC_SH_CODE
BFD_RELOC_SH_DATA
BFD_RELOC_SH_LABEL
BFD_RELOC_SH_LOOP_START
BFD_RELOC_SH_LOOP_END
BFD_RELOC_SH_COPY
BFD_RELOC_SH_GLOB_DAT
BFD_RELOC_SH_JMP_SLOT
BFD_RELOC_SH_RELATIVE
BFD_RELOC_SH_GOTPC
BFD_RELOC_SH_GOT_LOW16
BFD_RELOC_SH_GOT_MEDLOW16
BFD_RELOC_SH_GOT_MEDHI16
BFD_RELOC_SH_GOT_HI16
BFD_RELOC_SH_GOTPLT_LOW16
BFD_RELOC_SH_GOTPLT_MEDLOW16
BFD_RELOC_SH_GOTPLT_MEDHI16
BFD_RELOC_SH_GOTPLT_HI16
BFD_RELOC_SH_PLT_LOW16
BFD_RELOC_SH_PLT_MEDLOW16
BFD_RELOC_SH_PLT_MEDHI16
BFD_RELOC_SH_PLT_HI16
BFD_RELOC_SH_GOTOFF_LOW16
BFD_RELOC_SH_GOTOFF_MEDLOW16
BFD_RELOC_SH_GOTOFF_MEDHI16
BFD_RELOC_SH_GOTOFF_HI16

Chapter 2: BFD Front End 80

BFD_RELOC_SH_GOTPC_LOW16
BFD_RELOC_SH_GOTPC_MEDLOW16
BFD_RELOC_SH_GOTPC_MEDHI16
BFD_RELOC_SH_GOTPC_HI16
BFD_RELOC_SH_COPY64
BFD_RELOC_SH_GLOB_DAT64
BFD_RELOC_SH_JMP_SLOT64
BFD_RELOC_SH_RELATIVE64
BFD_RELOC_SH_GOT10BY4
BFD_RELOC_SH_GOT10BY8
BFD_RELOC_SH_GOTPLT10BY4
BFD_RELOC_SH_GOTPLT10BY8
BFD_RELOC_SH_GOTPLT32
BFD_RELOC_SH_SHMEDIA_CODE
BFD_RELOC_SH_IMMU5
BFD_RELOC_SH_IMMS6
BFD_RELOC_SH_IMMS6BY32
BFD_RELOC_SH_IMMU6
BFD_RELOC_SH_IMMS10
BFD_RELOC_SH_IMMS10BY2
BFD_RELOC_SH_IMMS10BY4
BFD_RELOC_SH_IMMS10BY8
BFD_RELOC_SH_IMMS16
BFD_RELOC_SH_IMMU16
BFD_RELOC_SH_IMM_LOW16
BFD_RELOC_SH_IMM_LOW16_PCREL
BFD_RELOC_SH_IMM_MEDLOW16
BFD_RELOC_SH_IMM_MEDLOW16_PCREL
BFD_RELOC_SH_IMM_MEDHI16
BFD_RELOC_SH_IMM_MEDHI16_PCREL
BFD_RELOC_SH_IMM_HI16
BFD_RELOC_SH_IMM_HI16_PCREL
BFD_RELOC_SH_PT_16
BFD_RELOC_SH_TLS_GD_32
BFD_RELOC_SH_TLS_LD_32
BFD_RELOC_SH_TLS_LDO_32
BFD_RELOC_SH_TLS_IE_32
BFD_RELOC_SH_TLS_LE_32
BFD_RELOC_SH_TLS_DTPMOD32
BFD_RELOC_SH_TLS_DTPOFF32
BFD_RELOC_SH_TLS_TPOFF32
BFD_RELOC_SH_GOT20
BFD_RELOC_SH_GOTOFF20
BFD_RELOC_SH_GOTFUNCDESC
BFD_RELOC_SH_GOTFUNCDESC20
BFD_RELOC_SH_GOTOFFFUNCDESC
BFD_RELOC_SH_GOTOFFFUNCDESC20

Chapter 2: BFD Front End 81

BFD_RELOC_SH_FUNCDESC
Renesas / SuperH SH relocs. Not all of these appear in object files.

BFD_RELOC_ARC_B22_PCREL
ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two bits must be zero
and are not stored in the instruction. The high 20 bits are installed in bits 26 through
7 of the instruction.

BFD_RELOC_ARC_B26
ARC 26 bit absolute branch. The lowest two bits must be zero and are not stored in
the instruction. The high 24 bits are installed in bits 23 through 0.

BFD_RELOC_BFIN_16_IMM
ADI Blackfin 16 bit immediate absolute reloc.

BFD_RELOC_BFIN_16_HIGH
ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.

BFD_RELOC_BFIN_4_PCREL
ADI Blackfin ’a’ part of LSETUP.

BFD_RELOC_BFIN_5_PCREL
ADI Blackfin.

BFD_RELOC_BFIN_16_LOW
ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.

BFD_RELOC_BFIN_10_PCREL
ADI Blackfin.

BFD_RELOC_BFIN_11_PCREL
ADI Blackfin ’b’ part of LSETUP.

BFD_RELOC_BFIN_12_PCREL_JUMP
ADI Blackfin.

BFD_RELOC_BFIN_12_PCREL_JUMP_S
ADI Blackfin Short jump, pcrel.

BFD_RELOC_BFIN_24_PCREL_CALL_X
ADI Blackfin Call.x not implemented.

BFD_RELOC_BFIN_24_PCREL_JUMP_L
ADI Blackfin Long Jump pcrel.

BFD_RELOC_BFIN_GOT17M4
BFD_RELOC_BFIN_GOTHI
BFD_RELOC_BFIN_GOTLO
BFD_RELOC_BFIN_FUNCDESC
BFD_RELOC_BFIN_FUNCDESC_GOT17M4
BFD_RELOC_BFIN_FUNCDESC_GOTHI
BFD_RELOC_BFIN_FUNCDESC_GOTLO

Chapter 2: BFD Front End 82

BFD_RELOC_BFIN_FUNCDESC_VALUE
BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4
BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI
BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO
BFD_RELOC_BFIN_GOTOFF17M4
BFD_RELOC_BFIN_GOTOFFHI
BFD_RELOC_BFIN_GOTOFFLO

ADI Blackfin FD-PIC relocations.

BFD_RELOC_BFIN_GOT
ADI Blackfin GOT relocation.

BFD_RELOC_BFIN_PLTPC
ADI Blackfin PLTPC relocation.

BFD_ARELOC_BFIN_PUSH
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_CONST
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_ADD
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_SUB
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_MULT
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_DIV
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_MOD
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_LSHIFT
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_RSHIFT
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_AND
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_OR
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_XOR
ADI Blackfin arithmetic relocation.

Chapter 2: BFD Front End 83

BFD_ARELOC_BFIN_LAND
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_LOR
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_LEN
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_NEG
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_COMP
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_PAGE
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_HWPAGE
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_ADDR
ADI Blackfin arithmetic relocation.

BFD_RELOC_D10V_10_PCREL_R
Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_D10V_10_PCREL_L
Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0.
This is the same as the previous reloc except it is in the left container, i.e., shifted
left 15 bits.

BFD_RELOC_D10V_18
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_D10V_18_PCREL
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_D30V_6
Mitsubishi D30V relocs. This is a 6-bit absolute reloc.

BFD_RELOC_D30V_9_PCREL
This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0.

BFD_RELOC_D30V_9_PCREL_R
This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the
previous reloc but on the right side of the container.

BFD_RELOC_D30V_15
This is a 12-bit absolute reloc with the right 3 bitsassumed to be 0.

BFD_RELOC_D30V_15_PCREL
This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0.

Chapter 2: BFD Front End 84

BFD_RELOC_D30V_15_PCREL_R
This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the
previous reloc but on the right side of the container.

BFD_RELOC_D30V_21
This is an 18-bit absolute reloc with the right 3 bits assumed to be 0.

BFD_RELOC_D30V_21_PCREL
This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0.

BFD_RELOC_D30V_21_PCREL_R
This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the
previous reloc but on the right side of the container.

BFD_RELOC_D30V_32
This is a 32-bit absolute reloc.

BFD_RELOC_D30V_32_PCREL
This is a 32-bit pc-relative reloc.

BFD_RELOC_DLX_HI16_S
DLX relocs

BFD_RELOC_DLX_LO16
DLX relocs

BFD_RELOC_DLX_JMP26
DLX relocs

BFD_RELOC_M32C_HI8
BFD_RELOC_M32C_RL_JUMP
BFD_RELOC_M32C_RL_1ADDR
BFD_RELOC_M32C_RL_2ADDR

Renesas M16C/M32C Relocations.

BFD_RELOC_M32R_24
Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit absolute address.

BFD_RELOC_M32R_10_PCREL
This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_18_PCREL
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_26_PCREL
This is a 26-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_HI16_ULO
This is a 16-bit reloc containing the high 16 bits of an address used when the lower
16 bits are treated as unsigned.

Chapter 2: BFD Front End 85

BFD_RELOC_M32R_HI16_SLO
This is a 16-bit reloc containing the high 16 bits of an address used when the lower
16 bits are treated as signed.

BFD_RELOC_M32R_LO16
This is a 16-bit reloc containing the lower 16 bits of an address.

BFD_RELOC_M32R_SDA16
This is a 16-bit reloc containing the small data area offset for use in add3, load, and
store instructions.

BFD_RELOC_M32R_GOT24
BFD_RELOC_M32R_26_PLTREL
BFD_RELOC_M32R_COPY
BFD_RELOC_M32R_GLOB_DAT
BFD_RELOC_M32R_JMP_SLOT
BFD_RELOC_M32R_RELATIVE
BFD_RELOC_M32R_GOTOFF
BFD_RELOC_M32R_GOTOFF_HI_ULO
BFD_RELOC_M32R_GOTOFF_HI_SLO
BFD_RELOC_M32R_GOTOFF_LO
BFD_RELOC_M32R_GOTPC24
BFD_RELOC_M32R_GOT16_HI_ULO
BFD_RELOC_M32R_GOT16_HI_SLO
BFD_RELOC_M32R_GOT16_LO
BFD_RELOC_M32R_GOTPC_HI_ULO
BFD_RELOC_M32R_GOTPC_HI_SLO
BFD_RELOC_M32R_GOTPC_LO

For PIC.

BFD_RELOC_NDS32_20
NDS32 relocs. This is a 20 bit absolute address.

BFD_RELOC_NDS32_9_PCREL
This is a 9-bit pc-relative reloc with the right 1 bit assumed to be 0.

BFD_RELOC_NDS32_WORD_9_PCREL
This is a 9-bit pc-relative reloc with the right 1 bit assumed to be 0.

BFD_RELOC_NDS32_15_PCREL
This is an 15-bit reloc with the right 1 bit assumed to be 0.

BFD_RELOC_NDS32_17_PCREL
This is an 17-bit reloc with the right 1 bit assumed to be 0.

BFD_RELOC_NDS32_25_PCREL
This is a 25-bit reloc with the right 1 bit assumed to be 0.

BFD_RELOC_NDS32_HI20
This is a 20-bit reloc containing the high 20 bits of an address used with the lower
12 bits

Chapter 2: BFD Front End 86

BFD_RELOC_NDS32_LO12S3
This is a 12-bit reloc containing the lower 12 bits of an address then shift right by 3.
This is used with ldi,sdi...

BFD_RELOC_NDS32_LO12S2
This is a 12-bit reloc containing the lower 12 bits of an address then shift left by 2.
This is used with lwi,swi...

BFD_RELOC_NDS32_LO12S1
This is a 12-bit reloc containing the lower 12 bits of an address then shift left by 1.
This is used with lhi,shi...

BFD_RELOC_NDS32_LO12S0
This is a 12-bit reloc containing the lower 12 bits of an address then shift left by 0.
This is used with lbisbi...

BFD_RELOC_NDS32_LO12S0_ORI
This is a 12-bit reloc containing the lower 12 bits of an address then shift left by 0.
This is only used with branch relaxations

BFD_RELOC_NDS32_SDA15S3
This is a 15-bit reloc containing the small data area 18-bit signed offset and shift left
by 3 for use in ldi, sdi...

BFD_RELOC_NDS32_SDA15S2
This is a 15-bit reloc containing the small data area 17-bit signed offset and shift left
by 2 for use in lwi, swi...

BFD_RELOC_NDS32_SDA15S1
This is a 15-bit reloc containing the small data area 16-bit signed offset and shift left
by 1 for use in lhi, shi...

BFD_RELOC_NDS32_SDA15S0
This is a 15-bit reloc containing the small data area 15-bit signed offset and shift left
by 0 for use in lbi, sbi...

BFD_RELOC_NDS32_SDA16S3
This is a 16-bit reloc containing the small data area 16-bit signed offset and shift left
by 3

BFD_RELOC_NDS32_SDA17S2
This is a 17-bit reloc containing the small data area 17-bit signed offset and shift left
by 2 for use in lwi.gp, swi.gp...

BFD_RELOC_NDS32_SDA18S1
This is a 18-bit reloc containing the small data area 18-bit signed offset and shift left
by 1 for use in lhi.gp, shi.gp...

BFD_RELOC_NDS32_SDA19S0
This is a 19-bit reloc containing the small data area 19-bit signed offset and shift left
by 0 for use in lbi.gp, sbi.gp...

Chapter 2: BFD Front End 87

BFD_RELOC_NDS32_GOT20
BFD_RELOC_NDS32_9_PLTREL
BFD_RELOC_NDS32_25_PLTREL
BFD_RELOC_NDS32_COPY
BFD_RELOC_NDS32_GLOB_DAT
BFD_RELOC_NDS32_JMP_SLOT
BFD_RELOC_NDS32_RELATIVE
BFD_RELOC_NDS32_GOTOFF
BFD_RELOC_NDS32_GOTOFF_HI20
BFD_RELOC_NDS32_GOTOFF_LO12
BFD_RELOC_NDS32_GOTPC20
BFD_RELOC_NDS32_GOT_HI20
BFD_RELOC_NDS32_GOT_LO12
BFD_RELOC_NDS32_GOTPC_HI20
BFD_RELOC_NDS32_GOTPC_LO12

for PIC

BFD_RELOC_NDS32_INSN16
BFD_RELOC_NDS32_LABEL
BFD_RELOC_NDS32_LONGCALL1
BFD_RELOC_NDS32_LONGCALL2
BFD_RELOC_NDS32_LONGCALL3
BFD_RELOC_NDS32_LONGJUMP1
BFD_RELOC_NDS32_LONGJUMP2
BFD_RELOC_NDS32_LONGJUMP3
BFD_RELOC_NDS32_LOADSTORE
BFD_RELOC_NDS32_9_FIXED
BFD_RELOC_NDS32_15_FIXED
BFD_RELOC_NDS32_17_FIXED
BFD_RELOC_NDS32_25_FIXED
BFD_RELOC_NDS32_LONGCALL4
BFD_RELOC_NDS32_LONGCALL5
BFD_RELOC_NDS32_LONGCALL6
BFD_RELOC_NDS32_LONGJUMP4
BFD_RELOC_NDS32_LONGJUMP5
BFD_RELOC_NDS32_LONGJUMP6
BFD_RELOC_NDS32_LONGJUMP7

for relax

BFD_RELOC_NDS32_PLTREL_HI20
BFD_RELOC_NDS32_PLTREL_LO12
BFD_RELOC_NDS32_PLT_GOTREL_HI20
BFD_RELOC_NDS32_PLT_GOTREL_LO12

for PIC

BFD_RELOC_NDS32_SDA12S2_DP
BFD_RELOC_NDS32_SDA12S2_SP
BFD_RELOC_NDS32_LO12S2_DP

Chapter 2: BFD Front End 88

BFD_RELOC_NDS32_LO12S2_SP
for floating point

BFD_RELOC_NDS32_DWARF2_OP1
BFD_RELOC_NDS32_DWARF2_OP2
BFD_RELOC_NDS32_DWARF2_LEB

for dwarf2 debug line.

BFD_RELOC_NDS32_UPDATE_TA
for eliminate 16-bit instructions

BFD_RELOC_NDS32_PLT_GOTREL_LO20
BFD_RELOC_NDS32_PLT_GOTREL_LO15
BFD_RELOC_NDS32_PLT_GOTREL_LO19
BFD_RELOC_NDS32_GOT_LO15
BFD_RELOC_NDS32_GOT_LO19
BFD_RELOC_NDS32_GOTOFF_LO15
BFD_RELOC_NDS32_GOTOFF_LO19
BFD_RELOC_NDS32_GOT15S2
BFD_RELOC_NDS32_GOT17S2

for PIC object relaxation

BFD_RELOC_NDS32_5
NDS32 relocs. This is a 5 bit absolute address.

BFD_RELOC_NDS32_10_UPCREL
This is a 10-bit unsigned pc-relative reloc with the right 1 bit assumed to be 0.

BFD_RELOC_NDS32_SDA_FP7U2_RELA
If fp were omitted, fp can used as another gp.

BFD_RELOC_NDS32_RELAX_ENTRY
BFD_RELOC_NDS32_GOT_SUFF
BFD_RELOC_NDS32_GOTOFF_SUFF
BFD_RELOC_NDS32_PLT_GOT_SUFF
BFD_RELOC_NDS32_MULCALL_SUFF
BFD_RELOC_NDS32_PTR
BFD_RELOC_NDS32_PTR_COUNT
BFD_RELOC_NDS32_PTR_RESOLVED
BFD_RELOC_NDS32_PLTBLOCK
BFD_RELOC_NDS32_RELAX_REGION_BEGIN
BFD_RELOC_NDS32_RELAX_REGION_END
BFD_RELOC_NDS32_MINUEND
BFD_RELOC_NDS32_SUBTRAHEND
BFD_RELOC_NDS32_DIFF8
BFD_RELOC_NDS32_DIFF16
BFD_RELOC_NDS32_DIFF32
BFD_RELOC_NDS32_DIFF_ULEB128
BFD_RELOC_NDS32_EMPTY

relaxation relative relocation types

Chapter 2: BFD Front End 89

BFD_RELOC_NDS32_25_ABS
This is a 25 bit absolute address.

BFD_RELOC_NDS32_DATA
BFD_RELOC_NDS32_TRAN
BFD_RELOC_NDS32_17IFC_PCREL
BFD_RELOC_NDS32_10IFCU_PCREL

For ex9 and ifc using.

BFD_RELOC_NDS32_TPOFF
BFD_RELOC_NDS32_TLS_LE_HI20
BFD_RELOC_NDS32_TLS_LE_LO12
BFD_RELOC_NDS32_TLS_LE_ADD
BFD_RELOC_NDS32_TLS_LE_LS
BFD_RELOC_NDS32_GOTTPOFF
BFD_RELOC_NDS32_TLS_IE_HI20
BFD_RELOC_NDS32_TLS_IE_LO12S2
BFD_RELOC_NDS32_TLS_TPOFF
BFD_RELOC_NDS32_TLS_LE_20
BFD_RELOC_NDS32_TLS_LE_15S0
BFD_RELOC_NDS32_TLS_LE_15S1
BFD_RELOC_NDS32_TLS_LE_15S2

For TLS.

BFD_RELOC_V850_9_PCREL
This is a 9-bit reloc

BFD_RELOC_V850_22_PCREL
This is a 22-bit reloc

BFD_RELOC_V850_SDA_16_16_OFFSET
This is a 16 bit offset from the short data area pointer.

BFD_RELOC_V850_SDA_15_16_OFFSET
This is a 16 bit offset (of which only 15 bits are used) from the short data area pointer.

BFD_RELOC_V850_ZDA_16_16_OFFSET
This is a 16 bit offset from the zero data area pointer.

BFD_RELOC_V850_ZDA_15_16_OFFSET
This is a 16 bit offset (of which only 15 bits are used) from the zero data area pointer.

BFD_RELOC_V850_TDA_6_8_OFFSET
This is an 8 bit offset (of which only 6 bits are used) from the tiny data area pointer.

BFD_RELOC_V850_TDA_7_8_OFFSET
This is an 8bit offset (of which only 7 bits are used) from the tiny data area pointer.

BFD_RELOC_V850_TDA_7_7_OFFSET
This is a 7 bit offset from the tiny data area pointer.

Chapter 2: BFD Front End 90

BFD_RELOC_V850_TDA_16_16_OFFSET
This is a 16 bit offset from the tiny data area pointer.

BFD_RELOC_V850_TDA_4_5_OFFSET
This is a 5 bit offset (of which only 4 bits are used) from the tiny data area pointer.

BFD_RELOC_V850_TDA_4_4_OFFSET
This is a 4 bit offset from the tiny data area pointer.

BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
This is a 16 bit offset from the short data area pointer, with the bits placed non-
contiguously in the instruction.

BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
This is a 16 bit offset from the zero data area pointer, with the bits placed non-
contiguously in the instruction.

BFD_RELOC_V850_CALLT_6_7_OFFSET
This is a 6 bit offset from the call table base pointer.

BFD_RELOC_V850_CALLT_16_16_OFFSET
This is a 16 bit offset from the call table base pointer.

BFD_RELOC_V850_LONGCALL
Used for relaxing indirect function calls.

BFD_RELOC_V850_LONGJUMP
Used for relaxing indirect jumps.

BFD_RELOC_V850_ALIGN
Used to maintain alignment whilst relaxing.

BFD_RELOC_V850_LO16_SPLIT_OFFSET
This is a variation of BFD RELOC LO16 that can be used in v850e ld.bu instructions.

BFD_RELOC_V850_16_PCREL
This is a 16-bit reloc.

BFD_RELOC_V850_17_PCREL
This is a 17-bit reloc.

BFD_RELOC_V850_23
This is a 23-bit reloc.

BFD_RELOC_V850_32_PCREL
This is a 32-bit reloc.

BFD_RELOC_V850_32_ABS
This is a 32-bit reloc.

BFD_RELOC_V850_16_SPLIT_OFFSET
This is a 16-bit reloc.

Chapter 2: BFD Front End 91

BFD_RELOC_V850_16_S1
This is a 16-bit reloc.

BFD_RELOC_V850_LO16_S1
Low 16 bits. 16 bit shifted by 1.

BFD_RELOC_V850_CALLT_15_16_OFFSET
This is a 16 bit offset from the call table base pointer.

BFD_RELOC_V850_32_GOTPCREL
DSO relocations.

BFD_RELOC_V850_16_GOT
DSO relocations.

BFD_RELOC_V850_32_GOT
DSO relocations.

BFD_RELOC_V850_22_PLT_PCREL
DSO relocations.

BFD_RELOC_V850_32_PLT_PCREL
DSO relocations.

BFD_RELOC_V850_COPY
DSO relocations.

BFD_RELOC_V850_GLOB_DAT
DSO relocations.

BFD_RELOC_V850_JMP_SLOT
DSO relocations.

BFD_RELOC_V850_RELATIVE
DSO relocations.

BFD_RELOC_V850_16_GOTOFF
DSO relocations.

BFD_RELOC_V850_32_GOTOFF
DSO relocations.

BFD_RELOC_V850_CODE
start code.

BFD_RELOC_V850_DATA
start data in text.

BFD_RELOC_TIC30_LDP
This is a 8bit DP reloc for the tms320c30, where the most significant 8 bits of a 24
bit word are placed into the least significant 8 bits of the opcode.

Chapter 2: BFD Front End 92

BFD_RELOC_TIC54X_PARTLS7
This is a 7bit reloc for the tms320c54x, where the least significant 7 bits of a 16 bit
word are placed into the least significant 7 bits of the opcode.

BFD_RELOC_TIC54X_PARTMS9
This is a 9bit DP reloc for the tms320c54x, where the most significant 9 bits of a 16
bit word are placed into the least significant 9 bits of the opcode.

BFD_RELOC_TIC54X_23
This is an extended address 23-bit reloc for the tms320c54x.

BFD_RELOC_TIC54X_16_OF_23
This is a 16-bit reloc for the tms320c54x, where the least significant 16 bits of a 23-bit
extended address are placed into the opcode.

BFD_RELOC_TIC54X_MS7_OF_23
This is a reloc for the tms320c54x, where the most significant 7 bits of a 23-bit
extended address are placed into the opcode.

BFD_RELOC_C6000_PCR_S21
BFD_RELOC_C6000_PCR_S12
BFD_RELOC_C6000_PCR_S10
BFD_RELOC_C6000_PCR_S7
BFD_RELOC_C6000_ABS_S16
BFD_RELOC_C6000_ABS_L16
BFD_RELOC_C6000_ABS_H16
BFD_RELOC_C6000_SBR_U15_B
BFD_RELOC_C6000_SBR_U15_H
BFD_RELOC_C6000_SBR_U15_W
BFD_RELOC_C6000_SBR_S16
BFD_RELOC_C6000_SBR_L16_B
BFD_RELOC_C6000_SBR_L16_H
BFD_RELOC_C6000_SBR_L16_W
BFD_RELOC_C6000_SBR_H16_B
BFD_RELOC_C6000_SBR_H16_H
BFD_RELOC_C6000_SBR_H16_W
BFD_RELOC_C6000_SBR_GOT_U15_W
BFD_RELOC_C6000_SBR_GOT_L16_W
BFD_RELOC_C6000_SBR_GOT_H16_W
BFD_RELOC_C6000_DSBT_INDEX
BFD_RELOC_C6000_PREL31
BFD_RELOC_C6000_COPY
BFD_RELOC_C6000_JUMP_SLOT
BFD_RELOC_C6000_EHTYPE
BFD_RELOC_C6000_PCR_H16
BFD_RELOC_C6000_PCR_L16
BFD_RELOC_C6000_ALIGN
BFD_RELOC_C6000_FPHEAD

Chapter 2: BFD Front End 93

BFD_RELOC_C6000_NOCMP
TMS320C6000 relocations.

BFD_RELOC_FR30_48
This is a 48 bit reloc for the FR30 that stores 32 bits.

BFD_RELOC_FR30_20
This is a 32 bit reloc for the FR30 that stores 20 bits split up into two sections.

BFD_RELOC_FR30_6_IN_4
This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in 4 bits.

BFD_RELOC_FR30_8_IN_8
This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset into 8 bits.

BFD_RELOC_FR30_9_IN_8
This is a 16 bit reloc for the FR30 that stores a 9 bit short offset into 8 bits.

BFD_RELOC_FR30_10_IN_8
This is a 16 bit reloc for the FR30 that stores a 10 bit word offset into 8 bits.

BFD_RELOC_FR30_9_PCREL
This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative short offset into 8
bits.

BFD_RELOC_FR30_12_PCREL
This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative short offset into 11
bits.

BFD_RELOC_MCORE_PCREL_IMM8BY4
BFD_RELOC_MCORE_PCREL_IMM11BY2
BFD_RELOC_MCORE_PCREL_IMM4BY2
BFD_RELOC_MCORE_PCREL_32
BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
BFD_RELOC_MCORE_RVA

Motorola Mcore relocations.

BFD_RELOC_MEP_8
BFD_RELOC_MEP_16
BFD_RELOC_MEP_32
BFD_RELOC_MEP_PCREL8A2
BFD_RELOC_MEP_PCREL12A2
BFD_RELOC_MEP_PCREL17A2
BFD_RELOC_MEP_PCREL24A2
BFD_RELOC_MEP_PCABS24A2
BFD_RELOC_MEP_LOW16
BFD_RELOC_MEP_HI16U
BFD_RELOC_MEP_HI16S
BFD_RELOC_MEP_GPREL
BFD_RELOC_MEP_TPREL

Chapter 2: BFD Front End 94

BFD_RELOC_MEP_TPREL7
BFD_RELOC_MEP_TPREL7A2
BFD_RELOC_MEP_TPREL7A4
BFD_RELOC_MEP_UIMM24
BFD_RELOC_MEP_ADDR24A4
BFD_RELOC_MEP_GNU_VTINHERIT
BFD_RELOC_MEP_GNU_VTENTRY

Toshiba Media Processor Relocations.

BFD_RELOC_METAG_HIADDR16
BFD_RELOC_METAG_LOADDR16
BFD_RELOC_METAG_RELBRANCH
BFD_RELOC_METAG_GETSETOFF
BFD_RELOC_METAG_HIOG
BFD_RELOC_METAG_LOOG
BFD_RELOC_METAG_REL8
BFD_RELOC_METAG_REL16
BFD_RELOC_METAG_HI16_GOTOFF
BFD_RELOC_METAG_LO16_GOTOFF
BFD_RELOC_METAG_GETSET_GOTOFF
BFD_RELOC_METAG_GETSET_GOT
BFD_RELOC_METAG_HI16_GOTPC
BFD_RELOC_METAG_LO16_GOTPC
BFD_RELOC_METAG_HI16_PLT
BFD_RELOC_METAG_LO16_PLT
BFD_RELOC_METAG_RELBRANCH_PLT
BFD_RELOC_METAG_GOTOFF
BFD_RELOC_METAG_PLT
BFD_RELOC_METAG_COPY
BFD_RELOC_METAG_JMP_SLOT
BFD_RELOC_METAG_RELATIVE
BFD_RELOC_METAG_GLOB_DAT
BFD_RELOC_METAG_TLS_GD
BFD_RELOC_METAG_TLS_LDM
BFD_RELOC_METAG_TLS_LDO_HI16
BFD_RELOC_METAG_TLS_LDO_LO16
BFD_RELOC_METAG_TLS_LDO
BFD_RELOC_METAG_TLS_IE
BFD_RELOC_METAG_TLS_IENONPIC
BFD_RELOC_METAG_TLS_IENONPIC_HI16
BFD_RELOC_METAG_TLS_IENONPIC_LO16
BFD_RELOC_METAG_TLS_TPOFF
BFD_RELOC_METAG_TLS_DTPMOD
BFD_RELOC_METAG_TLS_DTPOFF
BFD_RELOC_METAG_TLS_LE
BFD_RELOC_METAG_TLS_LE_HI16

Chapter 2: BFD Front End 95

BFD_RELOC_METAG_TLS_LE_LO16
Imagination Technologies Meta relocations.

BFD_RELOC_MMIX_GETA
BFD_RELOC_MMIX_GETA_1
BFD_RELOC_MMIX_GETA_2
BFD_RELOC_MMIX_GETA_3

These are relocations for the GETA instruction.

BFD_RELOC_MMIX_CBRANCH
BFD_RELOC_MMIX_CBRANCH_J
BFD_RELOC_MMIX_CBRANCH_1
BFD_RELOC_MMIX_CBRANCH_2
BFD_RELOC_MMIX_CBRANCH_3

These are relocations for a conditional branch instruction.

BFD_RELOC_MMIX_PUSHJ
BFD_RELOC_MMIX_PUSHJ_1
BFD_RELOC_MMIX_PUSHJ_2
BFD_RELOC_MMIX_PUSHJ_3
BFD_RELOC_MMIX_PUSHJ_STUBBABLE

These are relocations for the PUSHJ instruction.

BFD_RELOC_MMIX_JMP
BFD_RELOC_MMIX_JMP_1
BFD_RELOC_MMIX_JMP_2
BFD_RELOC_MMIX_JMP_3

These are relocations for the JMP instruction.

BFD_RELOC_MMIX_ADDR19
This is a relocation for a relative address as in a GETA instruction or a branch.

BFD_RELOC_MMIX_ADDR27
This is a relocation for a relative address as in a JMP instruction.

BFD_RELOC_MMIX_REG_OR_BYTE
This is a relocation for an instruction field that may be a general register or a value
0..255.

BFD_RELOC_MMIX_REG
This is a relocation for an instruction field that may be a general register.

BFD_RELOC_MMIX_BASE_PLUS_OFFSET
This is a relocation for two instruction fields holding a register and an offset, the
equivalent of the relocation.

BFD_RELOC_MMIX_LOCAL
This relocation is an assertion that the expression is not allocated as a global register.
It does not modify contents.

Chapter 2: BFD Front End 96

BFD_RELOC_AVR_7_PCREL
This is a 16 bit reloc for the AVR that stores 8 bit pc relative short offset into 7 bits.

BFD_RELOC_AVR_13_PCREL
This is a 16 bit reloc for the AVR that stores 13 bit pc relative short offset into 12
bits.

BFD_RELOC_AVR_16_PM
This is a 16 bit reloc for the AVR that stores 17 bit value (usually program memory
address) into 16 bits.

BFD_RELOC_AVR_LO8_LDI
This is a 16 bit reloc for the AVR that stores 8 bit value (usually data memory
address) into 8 bit immediate value of LDI insn.

BFD_RELOC_AVR_HI8_LDI
This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of data memory
address) into 8 bit immediate value of LDI insn.

BFD_RELOC_AVR_HH8_LDI
This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of program
memory address) into 8 bit immediate value of LDI insn.

BFD_RELOC_AVR_MS8_LDI
This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of 32 bit
value) into 8 bit immediate value of LDI insn.

BFD_RELOC_AVR_LO8_LDI_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually data memory
address) into 8 bit immediate value of SUBI insn.

BFD_RELOC_AVR_HI8_LDI_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of data
memory address) into 8 bit immediate value of SUBI insn.

BFD_RELOC_AVR_HH8_LDI_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (most high 8 bit of
program memory address) into 8 bit immediate value of LDI or SUBI insn.

BFD_RELOC_AVR_MS8_LDI_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (msb of 32 bit value)
into 8 bit immediate value of LDI insn.

BFD_RELOC_AVR_LO8_LDI_PM
This is a 16 bit reloc for the AVR that stores 8 bit value (usually command address)
into 8 bit immediate value of LDI insn.

BFD_RELOC_AVR_LO8_LDI_GS
This is a 16 bit reloc for the AVR that stores 8 bit value (command address) into 8
bit immediate value of LDI insn. If the address is beyond the 128k boundary, the
linker inserts a jump stub for this reloc in the lower 128k.

Chapter 2: BFD Front End 97

BFD_RELOC_AVR_HI8_LDI_PM
This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command
address) into 8 bit immediate value of LDI insn.

BFD_RELOC_AVR_HI8_LDI_GS
This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command
address) into 8 bit immediate value of LDI insn. If the address is beyond the 128k
boundary, the linker inserts a jump stub for this reloc below 128k.

BFD_RELOC_AVR_HH8_LDI_PM
This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of command
address) into 8 bit immediate value of LDI insn.

BFD_RELOC_AVR_LO8_LDI_PM_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually command
address) into 8 bit immediate value of SUBI insn.

BFD_RELOC_AVR_HI8_LDI_PM_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of 16 bit
command address) into 8 bit immediate value of SUBI insn.

BFD_RELOC_AVR_HH8_LDI_PM_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 6 bit of 22 bit
command address) into 8 bit immediate value of SUBI insn.

BFD_RELOC_AVR_CALL
This is a 32 bit reloc for the AVR that stores 23 bit value into 22 bits.

BFD_RELOC_AVR_LDI
This is a 16 bit reloc for the AVR that stores all needed bits for absolute addressing
with ldi with overflow check to linktime

BFD_RELOC_AVR_6
This is a 6 bit reloc for the AVR that stores offset for ldd/std instructions

BFD_RELOC_AVR_6_ADIW
This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw instructions

BFD_RELOC_AVR_8_LO
This is a 8 bit reloc for the AVR that stores bits 0..7 of a symbol in .byte lo8(symbol)

BFD_RELOC_AVR_8_HI
This is a 8 bit reloc for the AVR that stores bits 8..15 of a symbol in .byte hi8(symbol)

BFD_RELOC_AVR_8_HLO
This is a 8 bit reloc for the AVR that stores bits 16..23 of a symbol in .byte
hlo8(symbol)

BFD_RELOC_AVR_DIFF8
BFD_RELOC_AVR_DIFF16

Chapter 2: BFD Front End 98

BFD_RELOC_AVR_DIFF32
AVR relocations to mark the difference of two local symbols. These are only needed
to support linker relaxation and can be ignored when not relaxing. The field is set
to the value of the difference assuming no relaxation. The relocation encodes the
position of the second symbol so the linker can determine whether to adjust the field
value.

BFD_RELOC_AVR_LDS_STS_16
This is a 7 bit reloc for the AVR that stores SRAM address for 16bit lds and sts
instructions supported only tiny core.

BFD_RELOC_AVR_PORT6
This is a 6 bit reloc for the AVR that stores an I/O register number for the IN and
OUT instructions

BFD_RELOC_AVR_PORT5
This is a 5 bit reloc for the AVR that stores an I/O register number for the SBIC,
SBIS, SBI and CBI instructions

BFD_RELOC_RL78_NEG8
BFD_RELOC_RL78_NEG16
BFD_RELOC_RL78_NEG24
BFD_RELOC_RL78_NEG32
BFD_RELOC_RL78_16_OP
BFD_RELOC_RL78_24_OP
BFD_RELOC_RL78_32_OP
BFD_RELOC_RL78_8U
BFD_RELOC_RL78_16U
BFD_RELOC_RL78_24U
BFD_RELOC_RL78_DIR3U_PCREL
BFD_RELOC_RL78_DIFF
BFD_RELOC_RL78_GPRELB
BFD_RELOC_RL78_GPRELW
BFD_RELOC_RL78_GPRELL
BFD_RELOC_RL78_SYM
BFD_RELOC_RL78_OP_SUBTRACT
BFD_RELOC_RL78_OP_NEG
BFD_RELOC_RL78_OP_AND
BFD_RELOC_RL78_OP_SHRA
BFD_RELOC_RL78_ABS8
BFD_RELOC_RL78_ABS16
BFD_RELOC_RL78_ABS16_REV
BFD_RELOC_RL78_ABS32
BFD_RELOC_RL78_ABS32_REV
BFD_RELOC_RL78_ABS16U
BFD_RELOC_RL78_ABS16UW
BFD_RELOC_RL78_ABS16UL
BFD_RELOC_RL78_RELAX

Chapter 2: BFD Front End 99

BFD_RELOC_RL78_HI16
BFD_RELOC_RL78_HI8
BFD_RELOC_RL78_LO16
BFD_RELOC_RL78_CODE

Renesas RL78 Relocations.

BFD_RELOC_RX_NEG8
BFD_RELOC_RX_NEG16
BFD_RELOC_RX_NEG24
BFD_RELOC_RX_NEG32
BFD_RELOC_RX_16_OP
BFD_RELOC_RX_24_OP
BFD_RELOC_RX_32_OP
BFD_RELOC_RX_8U
BFD_RELOC_RX_16U
BFD_RELOC_RX_24U
BFD_RELOC_RX_DIR3U_PCREL
BFD_RELOC_RX_DIFF
BFD_RELOC_RX_GPRELB
BFD_RELOC_RX_GPRELW
BFD_RELOC_RX_GPRELL
BFD_RELOC_RX_SYM
BFD_RELOC_RX_OP_SUBTRACT
BFD_RELOC_RX_OP_NEG
BFD_RELOC_RX_ABS8
BFD_RELOC_RX_ABS16
BFD_RELOC_RX_ABS16_REV
BFD_RELOC_RX_ABS32
BFD_RELOC_RX_ABS32_REV
BFD_RELOC_RX_ABS16U
BFD_RELOC_RX_ABS16UW
BFD_RELOC_RX_ABS16UL
BFD_RELOC_RX_RELAX

Renesas RX Relocations.

BFD_RELOC_390_12
Direct 12 bit.

BFD_RELOC_390_GOT12
12 bit GOT offset.

BFD_RELOC_390_PLT32
32 bit PC relative PLT address.

BFD_RELOC_390_COPY
Copy symbol at runtime.

BFD_RELOC_390_GLOB_DAT
Create GOT entry.

Chapter 2: BFD Front End 100

BFD_RELOC_390_JMP_SLOT
Create PLT entry.

BFD_RELOC_390_RELATIVE
Adjust by program base.

BFD_RELOC_390_GOTPC
32 bit PC relative offset to GOT.

BFD_RELOC_390_GOT16
16 bit GOT offset.

BFD_RELOC_390_PC12DBL
PC relative 12 bit shifted by 1.

BFD_RELOC_390_PLT12DBL
12 bit PC rel. PLT shifted by 1.

BFD_RELOC_390_PC16DBL
PC relative 16 bit shifted by 1.

BFD_RELOC_390_PLT16DBL
16 bit PC rel. PLT shifted by 1.

BFD_RELOC_390_PC24DBL
PC relative 24 bit shifted by 1.

BFD_RELOC_390_PLT24DBL
24 bit PC rel. PLT shifted by 1.

BFD_RELOC_390_PC32DBL
PC relative 32 bit shifted by 1.

BFD_RELOC_390_PLT32DBL
32 bit PC rel. PLT shifted by 1.

BFD_RELOC_390_GOTPCDBL
32 bit PC rel. GOT shifted by 1.

BFD_RELOC_390_GOT64
64 bit GOT offset.

BFD_RELOC_390_PLT64
64 bit PC relative PLT address.

BFD_RELOC_390_GOTENT
32 bit rel. offset to GOT entry.

BFD_RELOC_390_GOTOFF64
64 bit offset to GOT.

BFD_RELOC_390_GOTPLT12
12-bit offset to symbol-entry within GOT, with PLT handling.

Chapter 2: BFD Front End 101

BFD_RELOC_390_GOTPLT16
16-bit offset to symbol-entry within GOT, with PLT handling.

BFD_RELOC_390_GOTPLT32
32-bit offset to symbol-entry within GOT, with PLT handling.

BFD_RELOC_390_GOTPLT64
64-bit offset to symbol-entry within GOT, with PLT handling.

BFD_RELOC_390_GOTPLTENT
32-bit rel. offset to symbol-entry within GOT, with PLT handling.

BFD_RELOC_390_PLTOFF16
16-bit rel. offset from the GOT to a PLT entry.

BFD_RELOC_390_PLTOFF32
32-bit rel. offset from the GOT to a PLT entry.

BFD_RELOC_390_PLTOFF64
64-bit rel. offset from the GOT to a PLT entry.

BFD_RELOC_390_TLS_LOAD
BFD_RELOC_390_TLS_GDCALL
BFD_RELOC_390_TLS_LDCALL
BFD_RELOC_390_TLS_GD32
BFD_RELOC_390_TLS_GD64
BFD_RELOC_390_TLS_GOTIE12
BFD_RELOC_390_TLS_GOTIE32
BFD_RELOC_390_TLS_GOTIE64
BFD_RELOC_390_TLS_LDM32
BFD_RELOC_390_TLS_LDM64
BFD_RELOC_390_TLS_IE32
BFD_RELOC_390_TLS_IE64
BFD_RELOC_390_TLS_IEENT
BFD_RELOC_390_TLS_LE32
BFD_RELOC_390_TLS_LE64
BFD_RELOC_390_TLS_LDO32
BFD_RELOC_390_TLS_LDO64
BFD_RELOC_390_TLS_DTPMOD
BFD_RELOC_390_TLS_DTPOFF
BFD_RELOC_390_TLS_TPOFF

s390 tls relocations.

BFD_RELOC_390_20
BFD_RELOC_390_GOT20
BFD_RELOC_390_GOTPLT20
BFD_RELOC_390_TLS_GOTIE20

Long displacement extension.

BFD_RELOC_390_IRELATIVE
STT GNU IFUNC relocation.

Chapter 2: BFD Front End 102

BFD_RELOC_SCORE_GPREL15
Score relocations Low 16 bit for load/store

BFD_RELOC_SCORE_DUMMY2
BFD_RELOC_SCORE_JMP

This is a 24-bit reloc with the right 1 bit assumed to be 0

BFD_RELOC_SCORE_BRANCH
This is a 19-bit reloc with the right 1 bit assumed to be 0

BFD_RELOC_SCORE_IMM30
This is a 32-bit reloc for 48-bit instructions.

BFD_RELOC_SCORE_IMM32
This is a 32-bit reloc for 48-bit instructions.

BFD_RELOC_SCORE16_JMP
This is a 11-bit reloc with the right 1 bit assumed to be 0

BFD_RELOC_SCORE16_BRANCH
This is a 8-bit reloc with the right 1 bit assumed to be 0

BFD_RELOC_SCORE_BCMP
This is a 9-bit reloc with the right 1 bit assumed to be 0

BFD_RELOC_SCORE_GOT15
BFD_RELOC_SCORE_GOT_LO16
BFD_RELOC_SCORE_CALL15
BFD_RELOC_SCORE_DUMMY_HI16

Undocumented Score relocs

BFD_RELOC_IP2K_FR9
Scenix IP2K - 9-bit register number / data address

BFD_RELOC_IP2K_BANK
Scenix IP2K - 4-bit register/data bank number

BFD_RELOC_IP2K_ADDR16CJP
Scenix IP2K - low 13 bits of instruction word address

BFD_RELOC_IP2K_PAGE3
Scenix IP2K - high 3 bits of instruction word address

BFD_RELOC_IP2K_LO8DATA
BFD_RELOC_IP2K_HI8DATA
BFD_RELOC_IP2K_EX8DATA

Scenix IP2K - ext/low/high 8 bits of data address

BFD_RELOC_IP2K_LO8INSN
BFD_RELOC_IP2K_HI8INSN

Scenix IP2K - low/high 8 bits of instruction word address

Chapter 2: BFD Front End 103

BFD_RELOC_IP2K_PC_SKIP
Scenix IP2K - even/odd PC modifier to modify snb pcl.0

BFD_RELOC_IP2K_TEXT
Scenix IP2K - 16 bit word address in text section.

BFD_RELOC_IP2K_FR_OFFSET
Scenix IP2K - 7-bit sp or dp offset

BFD_RELOC_VPE4KMATH_DATA
BFD_RELOC_VPE4KMATH_INSN

Scenix VPE4K coprocessor - data/insn-space addressing

BFD_RELOC_VTABLE_INHERIT
BFD_RELOC_VTABLE_ENTRY

These two relocations are used by the linker to determine which of the entries in a C++
virtual function table are actually used. When the –gc-sections option is given, the
linker will zero out the entries that are not used, so that the code for those functions
need not be included in the output.
VTABLE INHERIT is a zero-space relocation used to describe to the linker the in-
heritance tree of a C++ virtual function table. The relocation’s symbol should be the
parent class’ vtable, and the relocation should be located at the child vtable.
VTABLE ENTRY is a zero-space relocation that describes the use of a virtual func-
tion table entry. The reloc’s symbol should refer to the table of the class mentioned
in the code. Off of that base, an offset describes the entry that is being used. For
Rela hosts, this offset is stored in the reloc’s addend. For Rel hosts, we are forced to
put this offset in the reloc’s section offset.

BFD_RELOC_IA64_IMM14
BFD_RELOC_IA64_IMM22
BFD_RELOC_IA64_IMM64
BFD_RELOC_IA64_DIR32MSB
BFD_RELOC_IA64_DIR32LSB
BFD_RELOC_IA64_DIR64MSB
BFD_RELOC_IA64_DIR64LSB
BFD_RELOC_IA64_GPREL22
BFD_RELOC_IA64_GPREL64I
BFD_RELOC_IA64_GPREL32MSB
BFD_RELOC_IA64_GPREL32LSB
BFD_RELOC_IA64_GPREL64MSB
BFD_RELOC_IA64_GPREL64LSB
BFD_RELOC_IA64_LTOFF22
BFD_RELOC_IA64_LTOFF64I
BFD_RELOC_IA64_PLTOFF22
BFD_RELOC_IA64_PLTOFF64I
BFD_RELOC_IA64_PLTOFF64MSB
BFD_RELOC_IA64_PLTOFF64LSB
BFD_RELOC_IA64_FPTR64I

Chapter 2: BFD Front End 104

BFD_RELOC_IA64_FPTR32MSB
BFD_RELOC_IA64_FPTR32LSB
BFD_RELOC_IA64_FPTR64MSB
BFD_RELOC_IA64_FPTR64LSB
BFD_RELOC_IA64_PCREL21B
BFD_RELOC_IA64_PCREL21BI
BFD_RELOC_IA64_PCREL21M
BFD_RELOC_IA64_PCREL21F
BFD_RELOC_IA64_PCREL22
BFD_RELOC_IA64_PCREL60B
BFD_RELOC_IA64_PCREL64I
BFD_RELOC_IA64_PCREL32MSB
BFD_RELOC_IA64_PCREL32LSB
BFD_RELOC_IA64_PCREL64MSB
BFD_RELOC_IA64_PCREL64LSB
BFD_RELOC_IA64_LTOFF_FPTR22
BFD_RELOC_IA64_LTOFF_FPTR64I
BFD_RELOC_IA64_LTOFF_FPTR32MSB
BFD_RELOC_IA64_LTOFF_FPTR32LSB
BFD_RELOC_IA64_LTOFF_FPTR64MSB
BFD_RELOC_IA64_LTOFF_FPTR64LSB
BFD_RELOC_IA64_SEGREL32MSB
BFD_RELOC_IA64_SEGREL32LSB
BFD_RELOC_IA64_SEGREL64MSB
BFD_RELOC_IA64_SEGREL64LSB
BFD_RELOC_IA64_SECREL32MSB
BFD_RELOC_IA64_SECREL32LSB
BFD_RELOC_IA64_SECREL64MSB
BFD_RELOC_IA64_SECREL64LSB
BFD_RELOC_IA64_REL32MSB
BFD_RELOC_IA64_REL32LSB
BFD_RELOC_IA64_REL64MSB
BFD_RELOC_IA64_REL64LSB
BFD_RELOC_IA64_LTV32MSB
BFD_RELOC_IA64_LTV32LSB
BFD_RELOC_IA64_LTV64MSB
BFD_RELOC_IA64_LTV64LSB
BFD_RELOC_IA64_IPLTMSB
BFD_RELOC_IA64_IPLTLSB
BFD_RELOC_IA64_COPY
BFD_RELOC_IA64_LTOFF22X
BFD_RELOC_IA64_LDXMOV
BFD_RELOC_IA64_TPREL14
BFD_RELOC_IA64_TPREL22
BFD_RELOC_IA64_TPREL64I
BFD_RELOC_IA64_TPREL64MSB
BFD_RELOC_IA64_TPREL64LSB

Chapter 2: BFD Front End 105

BFD_RELOC_IA64_LTOFF_TPREL22
BFD_RELOC_IA64_DTPMOD64MSB
BFD_RELOC_IA64_DTPMOD64LSB
BFD_RELOC_IA64_LTOFF_DTPMOD22
BFD_RELOC_IA64_DTPREL14
BFD_RELOC_IA64_DTPREL22
BFD_RELOC_IA64_DTPREL64I
BFD_RELOC_IA64_DTPREL32MSB
BFD_RELOC_IA64_DTPREL32LSB
BFD_RELOC_IA64_DTPREL64MSB
BFD_RELOC_IA64_DTPREL64LSB
BFD_RELOC_IA64_LTOFF_DTPREL22

Intel IA64 Relocations.

BFD_RELOC_M68HC11_HI8
Motorola 68HC11 reloc. This is the 8 bit high part of an absolute address.

BFD_RELOC_M68HC11_LO8
Motorola 68HC11 reloc. This is the 8 bit low part of an absolute address.

BFD_RELOC_M68HC11_3B
Motorola 68HC11 reloc. This is the 3 bit of a value.

BFD_RELOC_M68HC11_RL_JUMP
Motorola 68HC11 reloc. This reloc marks the beginning of a jump/call instruction. It
is used for linker relaxation to correctly identify beginning of instruction and change
some branches to use PC-relative addressing mode.

BFD_RELOC_M68HC11_RL_GROUP
Motorola 68HC11 reloc. This reloc marks a group of several instructions that gcc
generates and for which the linker relaxation pass can modify and/or remove some of
them.

BFD_RELOC_M68HC11_LO16
Motorola 68HC11 reloc. This is the 16-bit lower part of an address. It is used for
’call’ instruction to specify the symbol address without any special transformation
(due to memory bank window).

BFD_RELOC_M68HC11_PAGE
Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the page number of an
address. It is used by ’call’ instruction to specify the page number of the symbol.

BFD_RELOC_M68HC11_24
Motorola 68HC11 reloc. This is a 24-bit reloc that represents the address with a
16-bit value and a 8-bit page number. The symbol address is transformed to follow
the 16K memory bank of 68HC12 (seen as mapped in the window).

BFD_RELOC_M68HC12_5B
Motorola 68HC12 reloc. This is the 5 bits of a value.

Chapter 2: BFD Front End 106

BFD_RELOC_XGATE_RL_JUMP
Freescale XGATE reloc. This reloc marks the beginning of a bra/jal instruction.

BFD_RELOC_XGATE_RL_GROUP
Freescale XGATE reloc. This reloc marks a group of several instructions that gcc
generates and for which the linker relaxation pass can modify and/or remove some of
them.

BFD_RELOC_XGATE_LO16
Freescale XGATE reloc. This is the 16-bit lower part of an address. It is used for the
’16-bit’ instructions.

BFD_RELOC_XGATE_GPAGE
Freescale XGATE reloc.

BFD_RELOC_XGATE_24
Freescale XGATE reloc.

BFD_RELOC_XGATE_PCREL_9
Freescale XGATE reloc. This is a 9-bit pc-relative reloc.

BFD_RELOC_XGATE_PCREL_10
Freescale XGATE reloc. This is a 10-bit pc-relative reloc.

BFD_RELOC_XGATE_IMM8_LO
Freescale XGATE reloc. This is the 16-bit lower part of an address. It is used for the
’16-bit’ instructions.

BFD_RELOC_XGATE_IMM8_HI
Freescale XGATE reloc. This is the 16-bit higher part of an address. It is used for
the ’16-bit’ instructions.

BFD_RELOC_XGATE_IMM3
Freescale XGATE reloc. This is a 3-bit pc-relative reloc.

BFD_RELOC_XGATE_IMM4
Freescale XGATE reloc. This is a 4-bit pc-relative reloc.

BFD_RELOC_XGATE_IMM5
Freescale XGATE reloc. This is a 5-bit pc-relative reloc.

BFD_RELOC_M68HC12_9B
Motorola 68HC12 reloc. This is the 9 bits of a value.

BFD_RELOC_M68HC12_16B
Motorola 68HC12 reloc. This is the 16 bits of a value.

BFD_RELOC_M68HC12_9_PCREL
Motorola 68HC12/XGATE reloc. This is a PCREL9 branch.

BFD_RELOC_M68HC12_10_PCREL
Motorola 68HC12/XGATE reloc. This is a PCREL10 branch.

Chapter 2: BFD Front End 107

BFD_RELOC_M68HC12_LO8XG
Motorola 68HC12/XGATE reloc. This is the 8 bit low part of an absolute address
and immediately precedes a matching HI8XG part.

BFD_RELOC_M68HC12_HI8XG
Motorola 68HC12/XGATE reloc. This is the 8 bit high part of an absolute address
and immediately follows a matching LO8XG part.

BFD_RELOC_16C_NUM08
BFD_RELOC_16C_NUM08_C
BFD_RELOC_16C_NUM16
BFD_RELOC_16C_NUM16_C
BFD_RELOC_16C_NUM32
BFD_RELOC_16C_NUM32_C
BFD_RELOC_16C_DISP04
BFD_RELOC_16C_DISP04_C
BFD_RELOC_16C_DISP08
BFD_RELOC_16C_DISP08_C
BFD_RELOC_16C_DISP16
BFD_RELOC_16C_DISP16_C
BFD_RELOC_16C_DISP24
BFD_RELOC_16C_DISP24_C
BFD_RELOC_16C_DISP24a
BFD_RELOC_16C_DISP24a_C
BFD_RELOC_16C_REG04
BFD_RELOC_16C_REG04_C
BFD_RELOC_16C_REG04a
BFD_RELOC_16C_REG04a_C
BFD_RELOC_16C_REG14
BFD_RELOC_16C_REG14_C
BFD_RELOC_16C_REG16
BFD_RELOC_16C_REG16_C
BFD_RELOC_16C_REG20
BFD_RELOC_16C_REG20_C
BFD_RELOC_16C_ABS20
BFD_RELOC_16C_ABS20_C
BFD_RELOC_16C_ABS24
BFD_RELOC_16C_ABS24_C
BFD_RELOC_16C_IMM04
BFD_RELOC_16C_IMM04_C
BFD_RELOC_16C_IMM16
BFD_RELOC_16C_IMM16_C
BFD_RELOC_16C_IMM20
BFD_RELOC_16C_IMM20_C
BFD_RELOC_16C_IMM24
BFD_RELOC_16C_IMM24_C
BFD_RELOC_16C_IMM32

Chapter 2: BFD Front End 108

BFD_RELOC_16C_IMM32_C
NS CR16C Relocations.

BFD_RELOC_CR16_NUM8
BFD_RELOC_CR16_NUM16
BFD_RELOC_CR16_NUM32
BFD_RELOC_CR16_NUM32a
BFD_RELOC_CR16_REGREL0
BFD_RELOC_CR16_REGREL4
BFD_RELOC_CR16_REGREL4a
BFD_RELOC_CR16_REGREL14
BFD_RELOC_CR16_REGREL14a
BFD_RELOC_CR16_REGREL16
BFD_RELOC_CR16_REGREL20
BFD_RELOC_CR16_REGREL20a
BFD_RELOC_CR16_ABS20
BFD_RELOC_CR16_ABS24
BFD_RELOC_CR16_IMM4
BFD_RELOC_CR16_IMM8
BFD_RELOC_CR16_IMM16
BFD_RELOC_CR16_IMM20
BFD_RELOC_CR16_IMM24
BFD_RELOC_CR16_IMM32
BFD_RELOC_CR16_IMM32a
BFD_RELOC_CR16_DISP4
BFD_RELOC_CR16_DISP8
BFD_RELOC_CR16_DISP16
BFD_RELOC_CR16_DISP20
BFD_RELOC_CR16_DISP24
BFD_RELOC_CR16_DISP24a
BFD_RELOC_CR16_SWITCH8
BFD_RELOC_CR16_SWITCH16
BFD_RELOC_CR16_SWITCH32
BFD_RELOC_CR16_GOT_REGREL20
BFD_RELOC_CR16_GOTC_REGREL20
BFD_RELOC_CR16_GLOB_DAT

NS CR16 Relocations.

BFD_RELOC_CRX_REL4
BFD_RELOC_CRX_REL8
BFD_RELOC_CRX_REL8_CMP
BFD_RELOC_CRX_REL16
BFD_RELOC_CRX_REL24
BFD_RELOC_CRX_REL32
BFD_RELOC_CRX_REGREL12
BFD_RELOC_CRX_REGREL22
BFD_RELOC_CRX_REGREL28
BFD_RELOC_CRX_REGREL32

Chapter 2: BFD Front End 109

BFD_RELOC_CRX_ABS16
BFD_RELOC_CRX_ABS32
BFD_RELOC_CRX_NUM8
BFD_RELOC_CRX_NUM16
BFD_RELOC_CRX_NUM32
BFD_RELOC_CRX_IMM16
BFD_RELOC_CRX_IMM32
BFD_RELOC_CRX_SWITCH8
BFD_RELOC_CRX_SWITCH16
BFD_RELOC_CRX_SWITCH32

NS CRX Relocations.

BFD_RELOC_CRIS_BDISP8
BFD_RELOC_CRIS_UNSIGNED_5
BFD_RELOC_CRIS_SIGNED_6
BFD_RELOC_CRIS_UNSIGNED_6
BFD_RELOC_CRIS_SIGNED_8
BFD_RELOC_CRIS_UNSIGNED_8
BFD_RELOC_CRIS_SIGNED_16
BFD_RELOC_CRIS_UNSIGNED_16
BFD_RELOC_CRIS_LAPCQ_OFFSET
BFD_RELOC_CRIS_UNSIGNED_4

These relocs are only used within the CRIS assembler. They are not (at present)
written to any object files.

BFD_RELOC_CRIS_COPY
BFD_RELOC_CRIS_GLOB_DAT
BFD_RELOC_CRIS_JUMP_SLOT
BFD_RELOC_CRIS_RELATIVE

Relocs used in ELF shared libraries for CRIS.

BFD_RELOC_CRIS_32_GOT
32-bit offset to symbol-entry within GOT.

BFD_RELOC_CRIS_16_GOT
16-bit offset to symbol-entry within GOT.

BFD_RELOC_CRIS_32_GOTPLT
32-bit offset to symbol-entry within GOT, with PLT handling.

BFD_RELOC_CRIS_16_GOTPLT
16-bit offset to symbol-entry within GOT, with PLT handling.

BFD_RELOC_CRIS_32_GOTREL
32-bit offset to symbol, relative to GOT.

BFD_RELOC_CRIS_32_PLT_GOTREL
32-bit offset to symbol with PLT entry, relative to GOT.

BFD_RELOC_CRIS_32_PLT_PCREL
32-bit offset to symbol with PLT entry, relative to this relocation.

Chapter 2: BFD Front End 110

BFD_RELOC_CRIS_32_GOT_GD
BFD_RELOC_CRIS_16_GOT_GD
BFD_RELOC_CRIS_32_GD
BFD_RELOC_CRIS_DTP
BFD_RELOC_CRIS_32_DTPREL
BFD_RELOC_CRIS_16_DTPREL
BFD_RELOC_CRIS_32_GOT_TPREL
BFD_RELOC_CRIS_16_GOT_TPREL
BFD_RELOC_CRIS_32_TPREL
BFD_RELOC_CRIS_16_TPREL
BFD_RELOC_CRIS_DTPMOD
BFD_RELOC_CRIS_32_IE

Relocs used in TLS code for CRIS.

BFD_RELOC_860_COPY
BFD_RELOC_860_GLOB_DAT
BFD_RELOC_860_JUMP_SLOT
BFD_RELOC_860_RELATIVE
BFD_RELOC_860_PC26
BFD_RELOC_860_PLT26
BFD_RELOC_860_PC16
BFD_RELOC_860_LOW0
BFD_RELOC_860_SPLIT0
BFD_RELOC_860_LOW1
BFD_RELOC_860_SPLIT1
BFD_RELOC_860_LOW2
BFD_RELOC_860_SPLIT2
BFD_RELOC_860_LOW3
BFD_RELOC_860_LOGOT0
BFD_RELOC_860_SPGOT0
BFD_RELOC_860_LOGOT1
BFD_RELOC_860_SPGOT1
BFD_RELOC_860_LOGOTOFF0
BFD_RELOC_860_SPGOTOFF0
BFD_RELOC_860_LOGOTOFF1
BFD_RELOC_860_SPGOTOFF1
BFD_RELOC_860_LOGOTOFF2
BFD_RELOC_860_LOGOTOFF3
BFD_RELOC_860_LOPC
BFD_RELOC_860_HIGHADJ
BFD_RELOC_860_HAGOT
BFD_RELOC_860_HAGOTOFF
BFD_RELOC_860_HAPC
BFD_RELOC_860_HIGH
BFD_RELOC_860_HIGOT
BFD_RELOC_860_HIGOTOFF

Intel i860 Relocations.

Chapter 2: BFD Front End 111

BFD_RELOC_OR1K_REL_26
BFD_RELOC_OR1K_GOTPC_HI16
BFD_RELOC_OR1K_GOTPC_LO16
BFD_RELOC_OR1K_GOT16
BFD_RELOC_OR1K_PLT26
BFD_RELOC_OR1K_GOTOFF_HI16
BFD_RELOC_OR1K_GOTOFF_LO16
BFD_RELOC_OR1K_COPY
BFD_RELOC_OR1K_GLOB_DAT
BFD_RELOC_OR1K_JMP_SLOT
BFD_RELOC_OR1K_RELATIVE
BFD_RELOC_OR1K_TLS_GD_HI16
BFD_RELOC_OR1K_TLS_GD_LO16
BFD_RELOC_OR1K_TLS_LDM_HI16
BFD_RELOC_OR1K_TLS_LDM_LO16
BFD_RELOC_OR1K_TLS_LDO_HI16
BFD_RELOC_OR1K_TLS_LDO_LO16
BFD_RELOC_OR1K_TLS_IE_HI16
BFD_RELOC_OR1K_TLS_IE_LO16
BFD_RELOC_OR1K_TLS_LE_HI16
BFD_RELOC_OR1K_TLS_LE_LO16
BFD_RELOC_OR1K_TLS_TPOFF
BFD_RELOC_OR1K_TLS_DTPOFF
BFD_RELOC_OR1K_TLS_DTPMOD

OpenRISC 1000 Relocations.

BFD_RELOC_H8_DIR16A8
BFD_RELOC_H8_DIR16R8
BFD_RELOC_H8_DIR24A8
BFD_RELOC_H8_DIR24R8
BFD_RELOC_H8_DIR32A16
BFD_RELOC_H8_DISP32A16

H8 elf Relocations.

BFD_RELOC_XSTORMY16_REL_12
BFD_RELOC_XSTORMY16_12
BFD_RELOC_XSTORMY16_24
BFD_RELOC_XSTORMY16_FPTR16

Sony Xstormy16 Relocations.

BFD_RELOC_RELC
Self-describing complex relocations.

BFD_RELOC_XC16X_PAG
BFD_RELOC_XC16X_POF
BFD_RELOC_XC16X_SEG
BFD_RELOC_XC16X_SOF

Infineon Relocations.

Chapter 2: BFD Front End 112

BFD_RELOC_VAX_GLOB_DAT
BFD_RELOC_VAX_JMP_SLOT
BFD_RELOC_VAX_RELATIVE

Relocations used by VAX ELF.

BFD_RELOC_MT_PC16
Morpho MT - 16 bit immediate relocation.

BFD_RELOC_MT_HI16
Morpho MT - Hi 16 bits of an address.

BFD_RELOC_MT_LO16
Morpho MT - Low 16 bits of an address.

BFD_RELOC_MT_GNU_VTINHERIT
Morpho MT - Used to tell the linker which vtable entries are used.

BFD_RELOC_MT_GNU_VTENTRY
Morpho MT - Used to tell the linker which vtable entries are used.

BFD_RELOC_MT_PCINSN8
Morpho MT - 8 bit immediate relocation.

BFD_RELOC_MSP430_10_PCREL
BFD_RELOC_MSP430_16_PCREL
BFD_RELOC_MSP430_16
BFD_RELOC_MSP430_16_PCREL_BYTE
BFD_RELOC_MSP430_16_BYTE
BFD_RELOC_MSP430_2X_PCREL
BFD_RELOC_MSP430_RL_PCREL
BFD_RELOC_MSP430_ABS8
BFD_RELOC_MSP430X_PCR20_EXT_SRC
BFD_RELOC_MSP430X_PCR20_EXT_DST
BFD_RELOC_MSP430X_PCR20_EXT_ODST
BFD_RELOC_MSP430X_ABS20_EXT_SRC
BFD_RELOC_MSP430X_ABS20_EXT_DST
BFD_RELOC_MSP430X_ABS20_EXT_ODST
BFD_RELOC_MSP430X_ABS20_ADR_SRC
BFD_RELOC_MSP430X_ABS20_ADR_DST
BFD_RELOC_MSP430X_PCR16
BFD_RELOC_MSP430X_PCR20_CALL
BFD_RELOC_MSP430X_ABS16
BFD_RELOC_MSP430_ABS_HI16
BFD_RELOC_MSP430_PREL31
BFD_RELOC_MSP430_SYM_DIFF

msp430 specific relocation codes

BFD_RELOC_NIOS2_S16
BFD_RELOC_NIOS2_U16
BFD_RELOC_NIOS2_CALL26

Chapter 2: BFD Front End 113

BFD_RELOC_NIOS2_IMM5
BFD_RELOC_NIOS2_CACHE_OPX
BFD_RELOC_NIOS2_IMM6
BFD_RELOC_NIOS2_IMM8
BFD_RELOC_NIOS2_HI16
BFD_RELOC_NIOS2_LO16
BFD_RELOC_NIOS2_HIADJ16
BFD_RELOC_NIOS2_GPREL
BFD_RELOC_NIOS2_UJMP
BFD_RELOC_NIOS2_CJMP
BFD_RELOC_NIOS2_CALLR
BFD_RELOC_NIOS2_ALIGN
BFD_RELOC_NIOS2_GOT16
BFD_RELOC_NIOS2_CALL16
BFD_RELOC_NIOS2_GOTOFF_LO
BFD_RELOC_NIOS2_GOTOFF_HA
BFD_RELOC_NIOS2_PCREL_LO
BFD_RELOC_NIOS2_PCREL_HA
BFD_RELOC_NIOS2_TLS_GD16
BFD_RELOC_NIOS2_TLS_LDM16
BFD_RELOC_NIOS2_TLS_LDO16
BFD_RELOC_NIOS2_TLS_IE16
BFD_RELOC_NIOS2_TLS_LE16
BFD_RELOC_NIOS2_TLS_DTPMOD
BFD_RELOC_NIOS2_TLS_DTPREL
BFD_RELOC_NIOS2_TLS_TPREL
BFD_RELOC_NIOS2_COPY
BFD_RELOC_NIOS2_GLOB_DAT
BFD_RELOC_NIOS2_JUMP_SLOT
BFD_RELOC_NIOS2_RELATIVE
BFD_RELOC_NIOS2_GOTOFF
BFD_RELOC_NIOS2_CALL26_NOAT
BFD_RELOC_NIOS2_GOT_LO
BFD_RELOC_NIOS2_GOT_HA
BFD_RELOC_NIOS2_CALL_LO
BFD_RELOC_NIOS2_CALL_HA

Relocations used by the Altera Nios II core.

BFD_RELOC_IQ2000_OFFSET_16
BFD_RELOC_IQ2000_OFFSET_21
BFD_RELOC_IQ2000_UHI16

IQ2000 Relocations.

BFD_RELOC_XTENSA_RTLD
Special Xtensa relocation used only by PLT entries in ELF shared objects to indicate
that the runtime linker should set the value to one of its own internal functions or
data structures.

Chapter 2: BFD Front End 114

BFD_RELOC_XTENSA_GLOB_DAT
BFD_RELOC_XTENSA_JMP_SLOT
BFD_RELOC_XTENSA_RELATIVE

Xtensa relocations for ELF shared objects.

BFD_RELOC_XTENSA_PLT
Xtensa relocation used in ELF object files for symbols that may require PLT entries.
Otherwise, this is just a generic 32-bit relocation.

BFD_RELOC_XTENSA_DIFF8
BFD_RELOC_XTENSA_DIFF16
BFD_RELOC_XTENSA_DIFF32

Xtensa relocations to mark the difference of two local symbols. These are only needed
to support linker relaxation and can be ignored when not relaxing. The field is set
to the value of the difference assuming no relaxation. The relocation encodes the
position of the first symbol so the linker can determine whether to adjust the field
value.

BFD_RELOC_XTENSA_SLOT0_OP
BFD_RELOC_XTENSA_SLOT1_OP
BFD_RELOC_XTENSA_SLOT2_OP
BFD_RELOC_XTENSA_SLOT3_OP
BFD_RELOC_XTENSA_SLOT4_OP
BFD_RELOC_XTENSA_SLOT5_OP
BFD_RELOC_XTENSA_SLOT6_OP
BFD_RELOC_XTENSA_SLOT7_OP
BFD_RELOC_XTENSA_SLOT8_OP
BFD_RELOC_XTENSA_SLOT9_OP
BFD_RELOC_XTENSA_SLOT10_OP
BFD_RELOC_XTENSA_SLOT11_OP
BFD_RELOC_XTENSA_SLOT12_OP
BFD_RELOC_XTENSA_SLOT13_OP
BFD_RELOC_XTENSA_SLOT14_OP

Generic Xtensa relocations for instruction operands. Only the slot number is encoded
in the relocation. The relocation applies to the last PC-relative immediate operand,
or if there are no PC-relative immediates, to the last immediate operand.

BFD_RELOC_XTENSA_SLOT0_ALT
BFD_RELOC_XTENSA_SLOT1_ALT
BFD_RELOC_XTENSA_SLOT2_ALT
BFD_RELOC_XTENSA_SLOT3_ALT
BFD_RELOC_XTENSA_SLOT4_ALT
BFD_RELOC_XTENSA_SLOT5_ALT
BFD_RELOC_XTENSA_SLOT6_ALT
BFD_RELOC_XTENSA_SLOT7_ALT
BFD_RELOC_XTENSA_SLOT8_ALT
BFD_RELOC_XTENSA_SLOT9_ALT
BFD_RELOC_XTENSA_SLOT10_ALT

Chapter 2: BFD Front End 115

BFD_RELOC_XTENSA_SLOT11_ALT
BFD_RELOC_XTENSA_SLOT12_ALT
BFD_RELOC_XTENSA_SLOT13_ALT
BFD_RELOC_XTENSA_SLOT14_ALT

Alternate Xtensa relocations. Only the slot is encoded in the relocation. The meaning
of these relocations is opcode-specific.

BFD_RELOC_XTENSA_OP0
BFD_RELOC_XTENSA_OP1
BFD_RELOC_XTENSA_OP2

Xtensa relocations for backward compatibility. These have all been replaced by
BFD RELOC XTENSA SLOT0 OP.

BFD_RELOC_XTENSA_ASM_EXPAND
Xtensa relocation to mark that the assembler expanded the instructions from an
original target. The expansion size is encoded in the reloc size.

BFD_RELOC_XTENSA_ASM_SIMPLIFY
Xtensa relocation to mark that the linker should simplify assembler-expanded
instructions. This is commonly used internally by the linker after analysis of a
BFD RELOC XTENSA ASM EXPAND.

BFD_RELOC_XTENSA_TLSDESC_FN
BFD_RELOC_XTENSA_TLSDESC_ARG
BFD_RELOC_XTENSA_TLS_DTPOFF
BFD_RELOC_XTENSA_TLS_TPOFF
BFD_RELOC_XTENSA_TLS_FUNC
BFD_RELOC_XTENSA_TLS_ARG
BFD_RELOC_XTENSA_TLS_CALL

Xtensa TLS relocations.

BFD_RELOC_Z80_DISP8
8 bit signed offset in (ix+d) or (iy+d).

BFD_RELOC_Z8K_DISP7
DJNZ offset.

BFD_RELOC_Z8K_CALLR
CALR offset.

BFD_RELOC_Z8K_IMM4L
4 bit value.

BFD_RELOC_LM32_CALL
BFD_RELOC_LM32_BRANCH
BFD_RELOC_LM32_16_GOT
BFD_RELOC_LM32_GOTOFF_HI16
BFD_RELOC_LM32_GOTOFF_LO16
BFD_RELOC_LM32_COPY
BFD_RELOC_LM32_GLOB_DAT

Chapter 2: BFD Front End 116

BFD_RELOC_LM32_JMP_SLOT
BFD_RELOC_LM32_RELATIVE

Lattice Mico32 relocations.

BFD_RELOC_MACH_O_SECTDIFF
Difference between two section addreses. Must be followed by a
BFD RELOC MACH O PAIR.

BFD_RELOC_MACH_O_LOCAL_SECTDIFF
Like BFD RELOC MACH O SECTDIFF but with a local symbol.

BFD_RELOC_MACH_O_PAIR
Pair of relocation. Contains the first symbol.

BFD_RELOC_MACH_O_X86_64_BRANCH32
BFD_RELOC_MACH_O_X86_64_BRANCH8

PCREL relocations. They are marked as branch to create PLT entry if required.

BFD_RELOC_MACH_O_X86_64_GOT
Used when referencing a GOT entry.

BFD_RELOC_MACH_O_X86_64_GOT_LOAD
Used when loading a GOT entry with movq. It is specially marked so that the linker
could optimize the movq to a leaq if possible.

BFD_RELOC_MACH_O_X86_64_SUBTRACTOR32
Symbol will be substracted. Must be followed by a BFD RELOC 64.

BFD_RELOC_MACH_O_X86_64_SUBTRACTOR64
Symbol will be substracted. Must be followed by a BFD RELOC 64.

BFD_RELOC_MACH_O_X86_64_PCREL32_1
Same as BFD RELOC 32 PCREL but with an implicit -1 addend.

BFD_RELOC_MACH_O_X86_64_PCREL32_2
Same as BFD RELOC 32 PCREL but with an implicit -2 addend.

BFD_RELOC_MACH_O_X86_64_PCREL32_4
Same as BFD RELOC 32 PCREL but with an implicit -4 addend.

BFD_RELOC_MICROBLAZE_32_LO
This is a 32 bit reloc for the microblaze that stores the low 16 bits of a value

BFD_RELOC_MICROBLAZE_32_LO_PCREL
This is a 32 bit pc-relative reloc for the microblaze that stores the low 16 bits of a
value

BFD_RELOC_MICROBLAZE_32_ROSDA
This is a 32 bit reloc for the microblaze that stores a value relative to the read-only
small data area anchor

Chapter 2: BFD Front End 117

BFD_RELOC_MICROBLAZE_32_RWSDA
This is a 32 bit reloc for the microblaze that stores a value relative to the read-write
small data area anchor

BFD_RELOC_MICROBLAZE_32_SYM_OP_SYM
This is a 32 bit reloc for the microblaze to handle expressions of the form "Symbol
Op Symbol"

BFD_RELOC_MICROBLAZE_64_NONE
This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an
imm instruction). No relocation is done here - only used for relaxing

BFD_RELOC_MICROBLAZE_64_GOTPC
This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an
imm instruction). The relocation is PC-relative GOT offset

BFD_RELOC_MICROBLAZE_64_GOT
This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an
imm instruction). The relocation is GOT offset

BFD_RELOC_MICROBLAZE_64_PLT
This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an
imm instruction). The relocation is PC-relative offset into PLT

BFD_RELOC_MICROBLAZE_64_GOTOFF
This is a 64 bit reloc that stores the 32 bit GOT relative value in two
words (with an imm instruction). The relocation is relative offset from
GLOBAL OFFSET TABLE

BFD_RELOC_MICROBLAZE_32_GOTOFF
This is a 32 bit reloc that stores the 32 bit GOT relative value in a word. The
relocation is relative offset from

BFD_RELOC_MICROBLAZE_COPY
This is used to tell the dynamic linker to copy the value out of the dynamic object
into the runtime process image.

BFD_RELOC_MICROBLAZE_64_TLS
Unused Reloc

BFD_RELOC_MICROBLAZE_64_TLSGD
This is a 64 bit reloc that stores the 32 bit GOT relative value of the GOT TLS GD
info entry in two words (with an imm instruction). The relocation is GOT offset.

BFD_RELOC_MICROBLAZE_64_TLSLD
This is a 64 bit reloc that stores the 32 bit GOT relative value of the GOT TLS LD
info entry in two words (with an imm instruction). The relocation is GOT offset.

BFD_RELOC_MICROBLAZE_32_TLSDTPMOD
This is a 32 bit reloc that stores the Module ID to GOT(n).

Chapter 2: BFD Front End 118

BFD_RELOC_MICROBLAZE_32_TLSDTPREL
This is a 32 bit reloc that stores TLS offset to GOT(n+1).

BFD_RELOC_MICROBLAZE_64_TLSDTPREL
This is a 32 bit reloc for storing TLS offset to two words (uses imm instruction)

BFD_RELOC_MICROBLAZE_64_TLSGOTTPREL
This is a 64 bit reloc that stores 32-bit thread pointer relative offset to two words
(uses imm instruction).

BFD_RELOC_MICROBLAZE_64_TLSTPREL
This is a 64 bit reloc that stores 32-bit thread pointer relative offset to two words
(uses imm instruction).

BFD_RELOC_AARCH64_RELOC_START
AArch64 pseudo relocation code to mark the start of the AArch64 relocation enumer-
ators. N.B. the order of the enumerators is important as several tables in the AArch64
bfd backend are indexed by these enumerators; make sure they are all synced.

BFD_RELOC_AARCH64_NONE
AArch64 null relocation code.

BFD_RELOC_AARCH64_64
BFD_RELOC_AARCH64_32
BFD_RELOC_AARCH64_16

Basic absolute relocations of N bits. These are equivalent to BFD RELOC N and
they were added to assist the indexing of the howto table.

BFD_RELOC_AARCH64_64_PCREL
BFD_RELOC_AARCH64_32_PCREL
BFD_RELOC_AARCH64_16_PCREL

PC-relative relocations. These are equivalent to BFD RELOC N PCREL and they
were added to assist the indexing of the howto table.

BFD_RELOC_AARCH64_MOVW_G0
AArch64 MOV[NZK] instruction with most significant bits 0 to 15 of an unsigned
address/value.

BFD_RELOC_AARCH64_MOVW_G0_NC
AArch64 MOV[NZK] instruction with less significant bits 0 to 15 of an address/value.
No overflow checking.

BFD_RELOC_AARCH64_MOVW_G1
AArch64 MOV[NZK] instruction with most significant bits 16 to 31 of an unsigned
address/value.

BFD_RELOC_AARCH64_MOVW_G1_NC
AArch64 MOV[NZK] instruction with less significant bits 16 to 31 of an address/value.
No overflow checking.

Chapter 2: BFD Front End 119

BFD_RELOC_AARCH64_MOVW_G2
AArch64 MOV[NZK] instruction with most significant bits 32 to 47 of an unsigned
address/value.

BFD_RELOC_AARCH64_MOVW_G2_NC
AArch64 MOV[NZK] instruction with less significant bits 32 to 47 of an address/value.
No overflow checking.

BFD_RELOC_AARCH64_MOVW_G3
AArch64 MOV[NZK] instruction with most signficant bits 48 to 64 of a signed or
unsigned address/value.

BFD_RELOC_AARCH64_MOVW_G0_S
AArch64 MOV[NZ] instruction with most significant bits 0 to 15 of a signed value.
Changes instruction to MOVZ or MOVN depending on the value’s sign.

BFD_RELOC_AARCH64_MOVW_G1_S
AArch64 MOV[NZ] instruction with most significant bits 16 to 31 of a signed value.
Changes instruction to MOVZ or MOVN depending on the value’s sign.

BFD_RELOC_AARCH64_MOVW_G2_S
AArch64 MOV[NZ] instruction with most significant bits 32 to 47 of a signed value.
Changes instruction to MOVZ or MOVN depending on the value’s sign.

BFD_RELOC_AARCH64_LD_LO19_PCREL
AArch64 Load Literal instruction, holding a 19 bit pc-relative word offset. The lowest
two bits must be zero and are not stored in the instruction, giving a 21 bit signed
byte offset.

BFD_RELOC_AARCH64_ADR_LO21_PCREL
AArch64 ADR instruction, holding a simple 21 bit pc-relative byte offset.

BFD_RELOC_AARCH64_ADR_HI21_PCREL
AArch64 ADRP instruction, with bits 12 to 32 of a pc-relative page offset, giving a
4KB aligned page base address.

BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
AArch64 ADRP instruction, with bits 12 to 32 of a pc-relative page offset, giving a
4KB aligned page base address, but with no overflow checking.

BFD_RELOC_AARCH64_ADD_LO12
AArch64 ADD immediate instruction, holding bits 0 to 11 of the address. Used in
conjunction with BFD RELOC AARCH64 ADR HI21 PCREL.

BFD_RELOC_AARCH64_LDST8_LO12
AArch64 8-bit load/store instruction, holding bits 0 to 11 of the address. Used in
conjunction with BFD RELOC AARCH64 ADR HI21 PCREL.

BFD_RELOC_AARCH64_TSTBR14
AArch64 14 bit pc-relative test bit and branch. The lowest two bits must be zero and
are not stored in the instruction, giving a 16 bit signed byte offset.

Chapter 2: BFD Front End 120

BFD_RELOC_AARCH64_BRANCH19
AArch64 19 bit pc-relative conditional branch and compare & branch. The lowest
two bits must be zero and are not stored in the instruction, giving a 21 bit signed
byte offset.

BFD_RELOC_AARCH64_JUMP26
AArch64 26 bit pc-relative unconditional branch. The lowest two bits must be zero
and are not stored in the instruction, giving a 28 bit signed byte offset.

BFD_RELOC_AARCH64_CALL26
AArch64 26 bit pc-relative unconditional branch and link. The lowest two bits must
be zero and are not stored in the instruction, giving a 28 bit signed byte offset.

BFD_RELOC_AARCH64_LDST16_LO12
AArch64 16-bit load/store instruction, holding bits 0 to 11 of the address. Used in
conjunction with BFD RELOC AARCH64 ADR HI21 PCREL.

BFD_RELOC_AARCH64_LDST32_LO12
AArch64 32-bit load/store instruction, holding bits 0 to 11 of the address. Used in
conjunction with BFD RELOC AARCH64 ADR HI21 PCREL.

BFD_RELOC_AARCH64_LDST64_LO12
AArch64 64-bit load/store instruction, holding bits 0 to 11 of the address. Used in
conjunction with BFD RELOC AARCH64 ADR HI21 PCREL.

BFD_RELOC_AARCH64_LDST128_LO12
AArch64 128-bit load/store instruction, holding bits 0 to 11 of the address. Used in
conjunction with BFD RELOC AARCH64 ADR HI21 PCREL.

BFD_RELOC_AARCH64_GOT_LD_PREL19
AArch64 Load Literal instruction, holding a 19 bit PC relative word offset of the
global offset table entry for a symbol. The lowest two bits must be zero and are
not stored in the instruction, giving a 21 bit signed byte offset. This relocation type
requires signed overflow checking.

BFD_RELOC_AARCH64_ADR_GOT_PAGE
Get to the page base of the global offset table entry for a symbol as part of an
ADRP instruction using a 21 bit PC relative value.Used in conjunction with
BFD RELOC AARCH64 LD64 GOT LO12 NC.

BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
Unsigned 12 bit byte offset for 64 bit load/store from the page of the GOT entry for
this symbol. Used in conjunction with BFD RELOC AARCH64 ADR GOTPAGE.
Valid in LP64 ABI only.

BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
Unsigned 12 bit byte offset for 32 bit load/store from the page of the GOT entry for
this symbol. Used in conjunction with BFD RELOC AARCH64 ADR GOTPAGE.
Valid in ILP32 ABI only.

Chapter 2: BFD Front End 121

BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
Get to the page base of the global offset table entry for a symbols tls index structure
as part of an adrp instruction using a 21 bit PC relative value. Used in conjunction
with BFD RELOC AARCH64 TLSGD ADD LO12 NC.

BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
Unsigned 12 bit byte offset to global offset table entry for a symbols tls index struc-
ture. Used in conjunction with BFD RELOC AARCH64 TLSGD ADR PAGE21.

BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
AArch64 TLS INITIAL EXEC relocation.

BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
AArch64 TLS INITIAL EXEC relocation.

BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
AArch64 TLS INITIAL EXEC relocation.

BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
AArch64 TLS INITIAL EXEC relocation.

BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
AArch64 TLS INITIAL EXEC relocation.

BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
AArch64 TLS INITIAL EXEC relocation.

BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
AArch64 TLS LOCAL EXEC relocation.

BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
AArch64 TLS LOCAL EXEC relocation.

BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
AArch64 TLS LOCAL EXEC relocation.

BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
AArch64 TLS LOCAL EXEC relocation.

BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
AArch64 TLS LOCAL EXEC relocation.

BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
AArch64 TLS LOCAL EXEC relocation.

BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
AArch64 TLS LOCAL EXEC relocation.

BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
AArch64 TLS LOCAL EXEC relocation.

BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
AArch64 TLS DESC relocation.

Chapter 2: BFD Front End 122

BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_OFF_G1
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_LDR
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_ADD
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_TLSDESC_CALL
AArch64 TLS DESC relocation.

BFD_RELOC_AARCH64_COPY
AArch64 TLS relocation.

BFD_RELOC_AARCH64_GLOB_DAT
AArch64 TLS relocation.

BFD_RELOC_AARCH64_JUMP_SLOT
AArch64 TLS relocation.

BFD_RELOC_AARCH64_RELATIVE
AArch64 TLS relocation.

BFD_RELOC_AARCH64_TLS_DTPMOD
AArch64 TLS relocation.

BFD_RELOC_AARCH64_TLS_DTPREL
AArch64 TLS relocation.

BFD_RELOC_AARCH64_TLS_TPREL
AArch64 TLS relocation.

BFD_RELOC_AARCH64_TLSDESC
AArch64 TLS relocation.

Chapter 2: BFD Front End 123

BFD_RELOC_AARCH64_IRELATIVE
AArch64 support for STT GNU IFUNC.

BFD_RELOC_AARCH64_RELOC_END
AArch64 pseudo relocation code to mark the end of the AArch64 relocation enumera-
tors that have direct mapping to ELF reloc codes. There are a few more enumerators
after this one; those are mainly used by the AArch64 assembler for the internal fixup
or to select one of the above enumerators.

BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP
AArch64 pseudo relocation code to be used internally by the AArch64 assembler and
not (currently) written to any object files.

BFD_RELOC_AARCH64_LDST_LO12
AArch64 unspecified load/store instruction, holding bits 0 to 11 of the address. Used
in conjunction with BFD RELOC AARCH64 ADR HI21 PCREL.

BFD_RELOC_AARCH64_LD_GOT_LO12_NC
AArch64 pseudo relocation code to be used internally by the AArch64 assembler and
not (currently) written to any object files.

BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC
AArch64 pseudo relocation code to be used internally by the AArch64 assembler and
not (currently) written to any object files.

BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC
AArch64 pseudo relocation code to be used internally by the AArch64 assembler and
not (currently) written to any object files.

BFD_RELOC_TILEPRO_COPY
BFD_RELOC_TILEPRO_GLOB_DAT
BFD_RELOC_TILEPRO_JMP_SLOT
BFD_RELOC_TILEPRO_RELATIVE
BFD_RELOC_TILEPRO_BROFF_X1
BFD_RELOC_TILEPRO_JOFFLONG_X1
BFD_RELOC_TILEPRO_JOFFLONG_X1_PLT
BFD_RELOC_TILEPRO_IMM8_X0
BFD_RELOC_TILEPRO_IMM8_Y0
BFD_RELOC_TILEPRO_IMM8_X1
BFD_RELOC_TILEPRO_IMM8_Y1
BFD_RELOC_TILEPRO_DEST_IMM8_X1
BFD_RELOC_TILEPRO_MT_IMM15_X1
BFD_RELOC_TILEPRO_MF_IMM15_X1
BFD_RELOC_TILEPRO_IMM16_X0
BFD_RELOC_TILEPRO_IMM16_X1
BFD_RELOC_TILEPRO_IMM16_X0_LO
BFD_RELOC_TILEPRO_IMM16_X1_LO
BFD_RELOC_TILEPRO_IMM16_X0_HI
BFD_RELOC_TILEPRO_IMM16_X1_HI

Chapter 2: BFD Front End 124

BFD_RELOC_TILEPRO_IMM16_X0_HA
BFD_RELOC_TILEPRO_IMM16_X1_HA
BFD_RELOC_TILEPRO_IMM16_X0_PCREL
BFD_RELOC_TILEPRO_IMM16_X1_PCREL
BFD_RELOC_TILEPRO_IMM16_X0_LO_PCREL
BFD_RELOC_TILEPRO_IMM16_X1_LO_PCREL
BFD_RELOC_TILEPRO_IMM16_X0_HI_PCREL
BFD_RELOC_TILEPRO_IMM16_X1_HI_PCREL
BFD_RELOC_TILEPRO_IMM16_X0_HA_PCREL
BFD_RELOC_TILEPRO_IMM16_X1_HA_PCREL
BFD_RELOC_TILEPRO_IMM16_X0_GOT
BFD_RELOC_TILEPRO_IMM16_X1_GOT
BFD_RELOC_TILEPRO_IMM16_X0_GOT_LO
BFD_RELOC_TILEPRO_IMM16_X1_GOT_LO
BFD_RELOC_TILEPRO_IMM16_X0_GOT_HI
BFD_RELOC_TILEPRO_IMM16_X1_GOT_HI
BFD_RELOC_TILEPRO_IMM16_X0_GOT_HA
BFD_RELOC_TILEPRO_IMM16_X1_GOT_HA
BFD_RELOC_TILEPRO_MMSTART_X0
BFD_RELOC_TILEPRO_MMEND_X0
BFD_RELOC_TILEPRO_MMSTART_X1
BFD_RELOC_TILEPRO_MMEND_X1
BFD_RELOC_TILEPRO_SHAMT_X0
BFD_RELOC_TILEPRO_SHAMT_X1
BFD_RELOC_TILEPRO_SHAMT_Y0
BFD_RELOC_TILEPRO_SHAMT_Y1
BFD_RELOC_TILEPRO_TLS_GD_CALL
BFD_RELOC_TILEPRO_IMM8_X0_TLS_GD_ADD
BFD_RELOC_TILEPRO_IMM8_X1_TLS_GD_ADD
BFD_RELOC_TILEPRO_IMM8_Y0_TLS_GD_ADD
BFD_RELOC_TILEPRO_IMM8_Y1_TLS_GD_ADD
BFD_RELOC_TILEPRO_TLS_IE_LOAD
BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD
BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD
BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_LO
BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_LO
BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_HI
BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_HI
BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_HA
BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_HA
BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE
BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE
BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_LO
BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_LO
BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_HI
BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_HI
BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_HA

Chapter 2: BFD Front End 125

BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_HA
BFD_RELOC_TILEPRO_TLS_DTPMOD32
BFD_RELOC_TILEPRO_TLS_DTPOFF32
BFD_RELOC_TILEPRO_TLS_TPOFF32
BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE
BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE
BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_LO
BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_LO
BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_HI
BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_HI
BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_HA
BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_HA

Tilera TILEPro Relocations.

BFD_RELOC_TILEGX_HW0
BFD_RELOC_TILEGX_HW1
BFD_RELOC_TILEGX_HW2
BFD_RELOC_TILEGX_HW3
BFD_RELOC_TILEGX_HW0_LAST
BFD_RELOC_TILEGX_HW1_LAST
BFD_RELOC_TILEGX_HW2_LAST
BFD_RELOC_TILEGX_COPY
BFD_RELOC_TILEGX_GLOB_DAT
BFD_RELOC_TILEGX_JMP_SLOT
BFD_RELOC_TILEGX_RELATIVE
BFD_RELOC_TILEGX_BROFF_X1
BFD_RELOC_TILEGX_JUMPOFF_X1
BFD_RELOC_TILEGX_JUMPOFF_X1_PLT
BFD_RELOC_TILEGX_IMM8_X0
BFD_RELOC_TILEGX_IMM8_Y0
BFD_RELOC_TILEGX_IMM8_X1
BFD_RELOC_TILEGX_IMM8_Y1
BFD_RELOC_TILEGX_DEST_IMM8_X1
BFD_RELOC_TILEGX_MT_IMM14_X1
BFD_RELOC_TILEGX_MF_IMM14_X1
BFD_RELOC_TILEGX_MMSTART_X0
BFD_RELOC_TILEGX_MMEND_X0
BFD_RELOC_TILEGX_SHAMT_X0
BFD_RELOC_TILEGX_SHAMT_X1
BFD_RELOC_TILEGX_SHAMT_Y0
BFD_RELOC_TILEGX_SHAMT_Y1
BFD_RELOC_TILEGX_IMM16_X0_HW0
BFD_RELOC_TILEGX_IMM16_X1_HW0
BFD_RELOC_TILEGX_IMM16_X0_HW1
BFD_RELOC_TILEGX_IMM16_X1_HW1
BFD_RELOC_TILEGX_IMM16_X0_HW2
BFD_RELOC_TILEGX_IMM16_X1_HW2

Chapter 2: BFD Front End 126

BFD_RELOC_TILEGX_IMM16_X0_HW3
BFD_RELOC_TILEGX_IMM16_X1_HW3
BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST
BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST
BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST
BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST
BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST
BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST
BFD_RELOC_TILEGX_IMM16_X0_HW0_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW0_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW1_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW1_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW2_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW2_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW3_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW3_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW0_GOT
BFD_RELOC_TILEGX_IMM16_X1_HW0_GOT
BFD_RELOC_TILEGX_IMM16_X0_HW0_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW0_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW1_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW1_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW2_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW2_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_GOT
BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_GOT
BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_GOT
BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_GOT
BFD_RELOC_TILEGX_IMM16_X0_HW3_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW3_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_GD
BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_GD
BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_LE
BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_LE
BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_GD

Chapter 2: BFD Front End 127

BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_IE
BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_IE
BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
BFD_RELOC_TILEGX_TLS_DTPMOD64
BFD_RELOC_TILEGX_TLS_DTPOFF64
BFD_RELOC_TILEGX_TLS_TPOFF64
BFD_RELOC_TILEGX_TLS_DTPMOD32
BFD_RELOC_TILEGX_TLS_DTPOFF32
BFD_RELOC_TILEGX_TLS_TPOFF32
BFD_RELOC_TILEGX_TLS_GD_CALL
BFD_RELOC_TILEGX_IMM8_X0_TLS_GD_ADD
BFD_RELOC_TILEGX_IMM8_X1_TLS_GD_ADD
BFD_RELOC_TILEGX_IMM8_Y0_TLS_GD_ADD
BFD_RELOC_TILEGX_IMM8_Y1_TLS_GD_ADD
BFD_RELOC_TILEGX_TLS_IE_LOAD
BFD_RELOC_TILEGX_IMM8_X0_TLS_ADD
BFD_RELOC_TILEGX_IMM8_X1_TLS_ADD
BFD_RELOC_TILEGX_IMM8_Y0_TLS_ADD
BFD_RELOC_TILEGX_IMM8_Y1_TLS_ADD

Tilera TILE-Gx Relocations.

BFD_RELOC_EPIPHANY_SIMM8
Adapteva EPIPHANY - 8 bit signed pc-relative displacement

BFD_RELOC_EPIPHANY_SIMM24
Adapteva EPIPHANY - 24 bit signed pc-relative displacement

BFD_RELOC_EPIPHANY_HIGH
Adapteva EPIPHANY - 16 most-significant bits of absolute address

BFD_RELOC_EPIPHANY_LOW
Adapteva EPIPHANY - 16 least-significant bits of absolute address

BFD_RELOC_EPIPHANY_SIMM11
Adapteva EPIPHANY - 11 bit signed number - add/sub immediate

BFD_RELOC_EPIPHANY_IMM11
Adapteva EPIPHANY - 11 bit sign-magnitude number (ld/st displacement)

Chapter 2: BFD Front End 128

BFD_RELOC_EPIPHANY_IMM8
Adapteva EPIPHANY - 8 bit immediate for 16 bit mov instruction.

BFD_RELOC_VISIUM_HI16
BFD_RELOC_VISIUM_LO16
BFD_RELOC_VISIUM_IM16
BFD_RELOC_VISIUM_REL16
BFD_RELOC_VISIUM_HI16_PCREL
BFD_RELOC_VISIUM_LO16_PCREL
BFD_RELOC_VISIUM_IM16_PCREL

Visium Relocations.

typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;

2.10.2.2 bfd_reloc_type_lookup

Synopsis

reloc_howto_type *bfd_reloc_type_lookup
(bfd *abfd, bfd_reloc_code_real_type code);

reloc_howto_type *bfd_reloc_name_lookup
(bfd *abfd, const char *reloc_name);

Description
Return a pointer to a howto structure which, when invoked, will perform the relocation
code on data from the architecture noted.

2.10.2.3 bfd_default_reloc_type_lookup

Synopsis

reloc_howto_type *bfd_default_reloc_type_lookup
(bfd *abfd, bfd_reloc_code_real_type code);

Description
Provides a default relocation lookup routine for any architecture.

2.10.2.4 bfd_get_reloc_code_name

Synopsis

const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);

Description
Provides a printable name for the supplied relocation code. Useful mainly for printing error
messages.

2.10.2.5 bfd_generic_relax_section

Synopsis

bfd_boolean bfd_generic_relax_section
(bfd *abfd,
asection *section,
struct bfd_link_info *,
bfd_boolean *);

Chapter 2: BFD Front End 129

Description
Provides default handling for relaxing for back ends which don’t do relaxing.

2.10.2.6 bfd_generic_gc_sections

Synopsis

bfd_boolean bfd_generic_gc_sections
(bfd *, struct bfd_link_info *);

Description
Provides default handling for relaxing for back ends which don’t do section gc – i.e., does
nothing.

2.10.2.7 bfd_generic_lookup_section_flags

Synopsis

bfd_boolean bfd_generic_lookup_section_flags
(struct bfd_link_info *, struct flag_info *, asection *);

Description
Provides default handling for section flags lookup – i.e., does nothing. Returns FALSE if
the section should be omitted, otherwise TRUE.

2.10.2.8 bfd_generic_merge_sections

Synopsis

bfd_boolean bfd_generic_merge_sections
(bfd *, struct bfd_link_info *);

Description
Provides default handling for SEC MERGE section merging for back ends which don’t have
SEC MERGE support – i.e., does nothing.

2.10.2.9 bfd_generic_get_relocated_section_contents

Synopsis

bfd_byte *bfd_generic_get_relocated_section_contents
(bfd *abfd,
struct bfd_link_info *link_info,
struct bfd_link_order *link_order,
bfd_byte *data,
bfd_boolean relocatable,
asymbol **symbols);

Description
Provides default handling of relocation effort for back ends which can’t be bothered to do
it efficiently.

2.11 Core files

2.11.1 Core file functions

Description
These are functions pertaining to core files.

Chapter 2: BFD Front End 130

2.11.1.1 bfd_core_file_failing_command

Synopsis

const char *bfd_core_file_failing_command (bfd *abfd);

Description
Return a read-only string explaining which program was running when it failed and pro-
duced the core file abfd.

2.11.1.2 bfd_core_file_failing_signal

Synopsis

int bfd_core_file_failing_signal (bfd *abfd);

Description
Returns the signal number which caused the core dump which generated the file the BFD
abfd is attached to.

2.11.1.3 bfd_core_file_pid

Synopsis

int bfd_core_file_pid (bfd *abfd);

Description
Returns the PID of the process the core dump the BFD abfd is attached to was generated
from.

2.11.1.4 core_file_matches_executable_p

Synopsis

bfd_boolean core_file_matches_executable_p
(bfd *core_bfd, bfd *exec_bfd);

Description
Return TRUE if the core file attached to core bfd was generated by a run of the executable
file attached to exec bfd, FALSE otherwise.

2.11.1.5 generic_core_file_matches_executable_p

Synopsis

bfd_boolean generic_core_file_matches_executable_p
(bfd *core_bfd, bfd *exec_bfd);

Description
Return TRUE if the core file attached to core bfd was generated by a run of the executable
file attached to exec bfd. The match is based on executable basenames only.

Note: When not able to determine the core file failing command or the executable name,
we still return TRUE even though we’re not sure that core file and executable match. This
is to avoid generating a false warning in situations where we really don’t know whether they
match or not.

Chapter 2: BFD Front End 131

2.12 Targets

Description
Each port of BFD to a different machine requires the creation of a target back end. All
the back end provides to the root part of BFD is a structure containing pointers to func-
tions which perform certain low level operations on files. BFD translates the applications’s
requests through a pointer into calls to the back end routines.

When a file is opened with bfd_openr, its format and target are unknown. BFD uses
various mechanisms to determine how to interpret the file. The operations performed are:

• Create a BFD by calling the internal routine _bfd_new_bfd, then call bfd_find_
target with the target string supplied to bfd_openr and the new BFD pointer.

• If a null target string was provided to bfd_find_target, look up the environment
variable GNUTARGET and use that as the target string.

• If the target string is still NULL, or the target string is default, then use the first item
in the target vector as the target type, and set target_defaulted in the BFD to cause
bfd_check_format to loop through all the targets. See Section 2.12.1 [bfd target],
page 131. See Section 2.9 [Formats], page 50.

• Otherwise, inspect the elements in the target vector one by one, until a match on target
name is found. When found, use it.

• Otherwise return the error bfd_error_invalid_target to bfd_openr.
• bfd_openr attempts to open the file using bfd_open_file, and returns the BFD.

Once the BFD has been opened and the target selected, the file format may be determined.
This is done by calling bfd_check_format on the BFD with a suggested format. If target_
defaulted has been set, each possible target type is tried to see if it recognizes the specified
format. bfd_check_format returns TRUE when the caller guesses right.

2.12.1 bfd target

Description
This structure contains everything that BFD knows about a target. It includes things like
its byte order, name, and which routines to call to do various operations.

Every BFD points to a target structure with its xvec member.

The macros below are used to dispatch to functions through the bfd_target vector. They
are used in a number of macros further down in ‘bfd.h’, and are also used when calling
various routines by hand inside the BFD implementation. The arglist argument must be
parenthesized; it contains all the arguments to the called function.

They make the documentation (more) unpleasant to read, so if someone wants to fix this
and not break the above, please do.

#define BFD_SEND(bfd, message, arglist) \
((*((bfd)->xvec->message)) arglist)

#ifdef DEBUG_BFD_SEND
#undef BFD_SEND
#define BFD_SEND(bfd, message, arglist) \
(((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \

Chapter 2: BFD Front End 132

((*((bfd)->xvec->message)) arglist) : \
(bfd_assert (__FILE__,__LINE__), NULL))

#endif

For operations which index on the BFD format:
#define BFD_SEND_FMT(bfd, message, arglist) \
(((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)

#ifdef DEBUG_BFD_SEND
#undef BFD_SEND_FMT
#define BFD_SEND_FMT(bfd, message, arglist) \
(((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
(((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \
(bfd_assert (__FILE__,__LINE__), NULL))

#endif

This is the structure which defines the type of BFD this is. The xvec member of the struct
bfd itself points here. Each module that implements access to a different target under BFD,
defines one of these.
FIXME, these names should be rationalised with the names of the entry points which call
them. Too bad we can’t have one macro to define them both!

enum bfd_flavour
{
bfd_target_unknown_flavour,
bfd_target_aout_flavour,
bfd_target_coff_flavour,
bfd_target_ecoff_flavour,
bfd_target_xcoff_flavour,
bfd_target_elf_flavour,
bfd_target_ieee_flavour,
bfd_target_nlm_flavour,
bfd_target_oasys_flavour,
bfd_target_tekhex_flavour,
bfd_target_srec_flavour,
bfd_target_verilog_flavour,
bfd_target_ihex_flavour,
bfd_target_som_flavour,
bfd_target_os9k_flavour,
bfd_target_versados_flavour,
bfd_target_msdos_flavour,
bfd_target_ovax_flavour,
bfd_target_evax_flavour,
bfd_target_mmo_flavour,
bfd_target_mach_o_flavour,
bfd_target_pef_flavour,
bfd_target_pef_xlib_flavour,
bfd_target_sym_flavour

Chapter 2: BFD Front End 133

};

enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };

/* Forward declaration. */
typedef struct bfd_link_info _bfd_link_info;

/* Forward declaration. */
typedef struct flag_info flag_info;

typedef struct bfd_target
{
/* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */
char *name;

/* The "flavour" of a back end is a general indication about
the contents of a file. */

enum bfd_flavour flavour;

/* The order of bytes within the data area of a file. */
enum bfd_endian byteorder;

/* The order of bytes within the header parts of a file. */
enum bfd_endian header_byteorder;

/* A mask of all the flags which an executable may have set -
from the set BFD_NO_FLAGS, HAS_RELOC, ...D_PAGED. */

flagword object_flags;

/* A mask of all the flags which a section may have set - from
the set SEC_NO_FLAGS, SEC_ALLOC, ...SET_NEVER_LOAD. */

flagword section_flags;

/* The character normally found at the front of a symbol.
(if any), perhaps ‘_’. */

char symbol_leading_char;

/* The pad character for file names within an archive header. */
char ar_pad_char;

/* The maximum number of characters in an archive header. */
unsigned char ar_max_namelen;

/* How well this target matches, used to select between various
possible targets when more than one target matches. */

unsigned char match_priority;

Chapter 2: BFD Front End 134

/* Entries for byte swapping for data. These are different from the
other entry points, since they don’t take a BFD as the first argument.
Certain other handlers could do the same. */

bfd_uint64_t (*bfd_getx64) (const void *);
bfd_int64_t (*bfd_getx_signed_64) (const void *);
void (*bfd_putx64) (bfd_uint64_t, void *);
bfd_vma (*bfd_getx32) (const void *);
bfd_signed_vma (*bfd_getx_signed_32) (const void *);
void (*bfd_putx32) (bfd_vma, void *);
bfd_vma (*bfd_getx16) (const void *);
bfd_signed_vma (*bfd_getx_signed_16) (const void *);
void (*bfd_putx16) (bfd_vma, void *);

/* Byte swapping for the headers. */
bfd_uint64_t (*bfd_h_getx64) (const void *);
bfd_int64_t (*bfd_h_getx_signed_64) (const void *);
void (*bfd_h_putx64) (bfd_uint64_t, void *);
bfd_vma (*bfd_h_getx32) (const void *);
bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);
void (*bfd_h_putx32) (bfd_vma, void *);
bfd_vma (*bfd_h_getx16) (const void *);
bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);
void (*bfd_h_putx16) (bfd_vma, void *);

/* Format dependent routines: these are vectors of entry points
within the target vector structure, one for each format to check. */

/* Check the format of a file being read. Return a bfd_target * or zero. */
const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *);

/* Set the format of a file being written. */
bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *);

/* Write cached information into a file being written, at bfd_close. */
bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *);

The general target vector. These vectors are initialized using the BFD JUMP TABLE
macros.

/* Generic entry points. */
#define BFD_JUMP_TABLE_GENERIC(NAME) \
NAME##_close_and_cleanup, \
NAME##_bfd_free_cached_info, \
NAME##_new_section_hook, \
NAME##_get_section_contents, \
NAME##_get_section_contents_in_window

Chapter 2: BFD Front End 135

/* Called when the BFD is being closed to do any necessary cleanup. */
bfd_boolean (*_close_and_cleanup) (bfd *);
/* Ask the BFD to free all cached information. */
bfd_boolean (*_bfd_free_cached_info) (bfd *);
/* Called when a new section is created. */
bfd_boolean (*_new_section_hook) (bfd *, sec_ptr);
/* Read the contents of a section. */
bfd_boolean (*_bfd_get_section_contents)
(bfd *, sec_ptr, void *, file_ptr, bfd_size_type);

bfd_boolean (*_bfd_get_section_contents_in_window)
(bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type);

/* Entry points to copy private data. */
#define BFD_JUMP_TABLE_COPY(NAME) \
NAME##_bfd_copy_private_bfd_data, \
NAME##_bfd_merge_private_bfd_data, \
_bfd_generic_init_private_section_data, \
NAME##_bfd_copy_private_section_data, \
NAME##_bfd_copy_private_symbol_data, \
NAME##_bfd_copy_private_header_data, \
NAME##_bfd_set_private_flags, \
NAME##_bfd_print_private_bfd_data

/* Called to copy BFD general private data from one object file
to another. */

bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *);
/* Called to merge BFD general private data from one object file

to a common output file when linking. */
bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *);
/* Called to initialize BFD private section data from one object file

to another. */
#define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \
BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info))
bfd_boolean (*_bfd_init_private_section_data)
(bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *);

/* Called to copy BFD private section data from one object file
to another. */

bfd_boolean (*_bfd_copy_private_section_data)
(bfd *, sec_ptr, bfd *, sec_ptr);

/* Called to copy BFD private symbol data from one symbol
to another. */

bfd_boolean (*_bfd_copy_private_symbol_data)
(bfd *, asymbol *, bfd *, asymbol *);

/* Called to copy BFD private header data from one object file
to another. */

bfd_boolean (*_bfd_copy_private_header_data)

Chapter 2: BFD Front End 136

(bfd *, bfd *);
/* Called to set private backend flags. */
bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword);

/* Called to print private BFD data. */
bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *);

/* Core file entry points. */
#define BFD_JUMP_TABLE_CORE(NAME) \
NAME##_core_file_failing_command, \
NAME##_core_file_failing_signal, \
NAME##_core_file_matches_executable_p, \
NAME##_core_file_pid

char * (*_core_file_failing_command) (bfd *);
int (*_core_file_failing_signal) (bfd *);
bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *);
int (*_core_file_pid) (bfd *);

/* Archive entry points. */
#define BFD_JUMP_TABLE_ARCHIVE(NAME) \
NAME##_slurp_armap, \
NAME##_slurp_extended_name_table, \
NAME##_construct_extended_name_table, \
NAME##_truncate_arname, \
NAME##_write_armap, \
NAME##_read_ar_hdr, \
NAME##_write_ar_hdr, \
NAME##_openr_next_archived_file, \
NAME##_get_elt_at_index, \
NAME##_generic_stat_arch_elt, \
NAME##_update_armap_timestamp

bfd_boolean (*_bfd_slurp_armap) (bfd *);
bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *);
bfd_boolean (*_bfd_construct_extended_name_table)
(bfd *, char **, bfd_size_type *, const char **);

void (*_bfd_truncate_arname) (bfd *, const char *, char *);
bfd_boolean (*write_armap)
(bfd *, unsigned int, struct orl *, unsigned int, int);

void * (*_bfd_read_ar_hdr_fn) (bfd *);
bfd_boolean (*_bfd_write_ar_hdr_fn) (bfd *, bfd *);
bfd * (*openr_next_archived_file) (bfd *, bfd *);

#define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i))
bfd * (*_bfd_get_elt_at_index) (bfd *, symindex);
int (*_bfd_stat_arch_elt) (bfd *, struct stat *);
bfd_boolean (*_bfd_update_armap_timestamp) (bfd *);

Chapter 2: BFD Front End 137

/* Entry points used for symbols. */
#define BFD_JUMP_TABLE_SYMBOLS(NAME) \
NAME##_get_symtab_upper_bound, \
NAME##_canonicalize_symtab, \
NAME##_make_empty_symbol, \
NAME##_print_symbol, \
NAME##_get_symbol_info, \
NAME##_get_symbol_version_string, \
NAME##_bfd_is_local_label_name, \
NAME##_bfd_is_target_special_symbol, \
NAME##_get_lineno, \
NAME##_find_nearest_line, \
NAME##_find_line, \
NAME##_find_inliner_info, \
NAME##_bfd_make_debug_symbol, \
NAME##_read_minisymbols, \
NAME##_minisymbol_to_symbol

long (*_bfd_get_symtab_upper_bound) (bfd *);
long (*_bfd_canonicalize_symtab)
(bfd *, struct bfd_symbol **);

struct bfd_symbol *
(*_bfd_make_empty_symbol) (bfd *);

void (*_bfd_print_symbol)
(bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type);

#define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))
void (*_bfd_get_symbol_info)
(bfd *, struct bfd_symbol *, symbol_info *);

#define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))
const char *(*_bfd_get_symbol_version_string)
(bfd *, struct bfd_symbol *, bfd_boolean *);

#define bfd_get_symbol_version_string(b,s,h) BFD_SEND (b, _bfd_get_symbol_version_string, (b,s,h))
bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *);
bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *);
alent * (*_get_lineno) (bfd *, struct bfd_symbol *);
bfd_boolean (*_bfd_find_nearest_line)
(bfd *, struct bfd_symbol **, struct bfd_section *, bfd_vma,
const char **, const char **, unsigned int *, unsigned int *);

bfd_boolean (*_bfd_find_line)
(bfd *, struct bfd_symbol **, struct bfd_symbol *,
const char **, unsigned int *);

bfd_boolean (*_bfd_find_inliner_info)
(bfd *, const char **, const char **, unsigned int *);

/* Back-door to allow format-aware applications to create debug symbols
while using BFD for everything else. Currently used by the assembler
when creating COFF files. */

Chapter 2: BFD Front End 138

asymbol * (*_bfd_make_debug_symbol)
(bfd *, void *, unsigned long size);

#define bfd_read_minisymbols(b, d, m, s) \
BFD_SEND (b, _read_minisymbols, (b, d, m, s))
long (*_read_minisymbols)
(bfd *, bfd_boolean, void **, unsigned int *);

#define bfd_minisymbol_to_symbol(b, d, m, f) \
BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))
asymbol * (*_minisymbol_to_symbol)
(bfd *, bfd_boolean, const void *, asymbol *);

/* Routines for relocs. */
#define BFD_JUMP_TABLE_RELOCS(NAME) \
NAME##_get_reloc_upper_bound, \
NAME##_canonicalize_reloc, \
NAME##_bfd_reloc_type_lookup, \
NAME##_bfd_reloc_name_lookup

long (*_get_reloc_upper_bound) (bfd *, sec_ptr);
long (*_bfd_canonicalize_reloc)
(bfd *, sec_ptr, arelent **, struct bfd_symbol **);

/* See documentation on reloc types. */
reloc_howto_type *

(*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);
reloc_howto_type *

(*reloc_name_lookup) (bfd *, const char *);

/* Routines used when writing an object file. */
#define BFD_JUMP_TABLE_WRITE(NAME) \
NAME##_set_arch_mach, \
NAME##_set_section_contents

bfd_boolean (*_bfd_set_arch_mach)
(bfd *, enum bfd_architecture, unsigned long);

bfd_boolean (*_bfd_set_section_contents)
(bfd *, sec_ptr, const void *, file_ptr, bfd_size_type);

/* Routines used by the linker. */
#define BFD_JUMP_TABLE_LINK(NAME) \
NAME##_sizeof_headers, \
NAME##_bfd_get_relocated_section_contents, \
NAME##_bfd_relax_section, \
NAME##_bfd_link_hash_table_create, \
NAME##_bfd_link_add_symbols, \
NAME##_bfd_link_just_syms, \
NAME##_bfd_copy_link_hash_symbol_type, \

Chapter 2: BFD Front End 139

NAME##_bfd_final_link, \
NAME##_bfd_link_split_section, \
NAME##_bfd_gc_sections, \
NAME##_bfd_lookup_section_flags, \
NAME##_bfd_merge_sections, \
NAME##_bfd_is_group_section, \
NAME##_bfd_discard_group, \
NAME##_section_already_linked, \
NAME##_bfd_define_common_symbol

int (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *);
bfd_byte * (*_bfd_get_relocated_section_contents)
(bfd *, struct bfd_link_info *, struct bfd_link_order *,
bfd_byte *, bfd_boolean, struct bfd_symbol **);

bfd_boolean (*_bfd_relax_section)
(bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *);

/* Create a hash table for the linker. Different backends store
different information in this table. */

struct bfd_link_hash_table *
(*_bfd_link_hash_table_create) (bfd *);

/* Add symbols from this object file into the hash table. */
bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);

/* Indicate that we are only retrieving symbol values from this section. */
void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);

/* Copy the symbol type and other attributes for a linker script
assignment of one symbol to another. */

#define bfd_copy_link_hash_symbol_type(b, t, f) \
BFD_SEND (b, _bfd_copy_link_hash_symbol_type, (b, t, f))
void (*_bfd_copy_link_hash_symbol_type)
(bfd *, struct bfd_link_hash_entry *, struct bfd_link_hash_entry *);

/* Do a link based on the link_order structures attached to each
section of the BFD. */

bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *);

/* Should this section be split up into smaller pieces during linking. */
bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *);

/* Remove sections that are not referenced from the output. */
bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);

/* Sets the bitmask of allowed and disallowed section flags. */

Chapter 2: BFD Front End 140

bfd_boolean (*_bfd_lookup_section_flags) (struct bfd_link_info *,
struct flag_info *,
asection *);

/* Attempt to merge SEC_MERGE sections. */
bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);

/* Is this section a member of a group? */
bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *);

/* Discard members of a group. */
bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *);

/* Check if SEC has been already linked during a reloceatable or
final link. */

bfd_boolean (*_section_already_linked) (bfd *, asection *,
struct bfd_link_info *);

/* Define a common symbol. */
bfd_boolean (*_bfd_define_common_symbol) (bfd *, struct bfd_link_info *,

struct bfd_link_hash_entry *);

/* Routines to handle dynamic symbols and relocs. */
#define BFD_JUMP_TABLE_DYNAMIC(NAME) \
NAME##_get_dynamic_symtab_upper_bound, \
NAME##_canonicalize_dynamic_symtab, \
NAME##_get_synthetic_symtab, \
NAME##_get_dynamic_reloc_upper_bound, \
NAME##_canonicalize_dynamic_reloc

/* Get the amount of memory required to hold the dynamic symbols. */
long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);
/* Read in the dynamic symbols. */
long (*_bfd_canonicalize_dynamic_symtab)
(bfd *, struct bfd_symbol **);

/* Create synthetized symbols. */
long (*_bfd_get_synthetic_symtab)
(bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **,
struct bfd_symbol **);

/* Get the amount of memory required to hold the dynamic relocs. */
long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);
/* Read in the dynamic relocs. */
long (*_bfd_canonicalize_dynamic_reloc)
(bfd *, arelent **, struct bfd_symbol **);

Chapter 2: BFD Front End 141

A pointer to an alternative bfd target in case the current one is not satisfactory. This can
happen when the target cpu supports both big and little endian code, and target chosen by
the linker has the wrong endianness. The function open output() in ld/ldlang.c uses this
field to find an alternative output format that is suitable.

/* Opposite endian version of this target. */
const struct bfd_target * alternative_target;

/* Data for use by back-end routines, which isn’t
generic enough to belong in this structure. */

const void *backend_data;

} bfd_target;

2.12.1.1 bfd_set_default_target

Synopsis

bfd_boolean bfd_set_default_target (const char *name);

Description
Set the default target vector to use when recognizing a BFD. This takes the name of the
target, which may be a BFD target name or a configuration triplet.

2.12.1.2 bfd_find_target

Synopsis

const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);

Description
Return a pointer to the transfer vector for the object target named target name. If tar-
get name is NULL, choose the one in the environment variable GNUTARGET; if that is null or
not defined, then choose the first entry in the target list. Passing in the string "default" or
setting the environment variable to "default" will cause the first entry in the target list to
be returned, and "target defaulted" will be set in the BFD if abfd isn’t NULL. This causes
bfd_check_format to loop over all the targets to find the one that matches the file being
read.

2.12.1.3 bfd_get_target_info

Synopsis

const bfd_target *bfd_get_target_info (const char *target_name,
bfd *abfd,
bfd_boolean *is_bigendian,
int *underscoring,
const char **def_target_arch);

Description
Return a pointer to the transfer vector for the object target named target name. If tar-
get name is NULL, choose the one in the environment variable GNUTARGET; if that is null or
not defined, then choose the first entry in the target list. Passing in the string "default"
or setting the environment variable to "default" will cause the first entry in the target list

Chapter 2: BFD Front End 142

to be returned, and "target defaulted" will be set in the BFD if abfd isn’t NULL. This
causes bfd_check_format to loop over all the targets to find the one that matches the file
being read. If is bigendian is not NULL, then set this value to target’s endian mode. True
for big-endian, FALSE for little-endian or for invalid target. If underscoring is not NULL,
then set this value to target’s underscoring mode. Zero for none-underscoring, -1 for invalid
target, else the value of target vector’s symbol underscoring. If def target arch is not NULL,
then set it to the architecture string specified by the target name.

2.12.1.4 bfd_target_list

Synopsis

const char ** bfd_target_list (void);

Description
Return a freshly malloced NULL-terminated vector of the names of all the valid BFD
targets. Do not modify the names.

2.12.1.5 bfd_seach_for_target

Synopsis

const bfd_target *bfd_search_for_target
(int (*search_func) (const bfd_target *, void *),
void *);

Description
Return a pointer to the first transfer vector in the list of transfer vectors maintained by BFD
that produces a non-zero result when passed to the function search func. The parameter
data is passed, unexamined, to the search function.

2.13 Architectures

BFD keeps one atom in a BFD describing the architecture of the data attached to the BFD:
a pointer to a bfd_arch_info_type.
Pointers to structures can be requested independently of a BFD so that an architecture’s
information can be interrogated without access to an open BFD.
The architecture information is provided by each architecture package. The set of default
architectures is selected by the macro SELECT_ARCHITECTURES. This is normally set up
in the ‘config/target.mt’ file of your choice. If the name is not defined, then all the
architectures supported are included.
When BFD starts up, all the architectures are called with an initialize method. It is up to
the architecture back end to insert as many items into the list of architectures as it wants
to; generally this would be one for each machine and one for the default case (an item with
a machine field of 0).
BFD’s idea of an architecture is implemented in ‘archures.c’.

2.13.1 bfd architecture

Description
This enum gives the object file’s CPU architecture, in a global sense—i.e., what processor
family does it belong to? Another field indicates which processor within the family is in

Chapter 2: BFD Front End 143

use. The machine gives a number which distinguishes different versions of the architecture,
containing, for example, 2 and 3 for Intel i960 KA and i960 KB, and 68020 and 68030 for
Motorola 68020 and 68030.

enum bfd_architecture
{
bfd_arch_unknown, /* File arch not known. */
bfd_arch_obscure, /* Arch known, not one of these. */
bfd_arch_m68k, /* Motorola 68xxx */

#define bfd_mach_m68000 1
#define bfd_mach_m68008 2
#define bfd_mach_m68010 3
#define bfd_mach_m68020 4
#define bfd_mach_m68030 5
#define bfd_mach_m68040 6
#define bfd_mach_m68060 7
#define bfd_mach_cpu32 8
#define bfd_mach_fido 9
#define bfd_mach_mcf_isa_a_nodiv 10
#define bfd_mach_mcf_isa_a 11
#define bfd_mach_mcf_isa_a_mac 12
#define bfd_mach_mcf_isa_a_emac 13
#define bfd_mach_mcf_isa_aplus 14
#define bfd_mach_mcf_isa_aplus_mac 15
#define bfd_mach_mcf_isa_aplus_emac 16
#define bfd_mach_mcf_isa_b_nousp 17
#define bfd_mach_mcf_isa_b_nousp_mac 18
#define bfd_mach_mcf_isa_b_nousp_emac 19
#define bfd_mach_mcf_isa_b 20
#define bfd_mach_mcf_isa_b_mac 21
#define bfd_mach_mcf_isa_b_emac 22
#define bfd_mach_mcf_isa_b_float 23
#define bfd_mach_mcf_isa_b_float_mac 24
#define bfd_mach_mcf_isa_b_float_emac 25
#define bfd_mach_mcf_isa_c 26
#define bfd_mach_mcf_isa_c_mac 27
#define bfd_mach_mcf_isa_c_emac 28
#define bfd_mach_mcf_isa_c_nodiv 29
#define bfd_mach_mcf_isa_c_nodiv_mac 30
#define bfd_mach_mcf_isa_c_nodiv_emac 31
bfd_arch_vax, /* DEC Vax */
bfd_arch_i960, /* Intel 960 */
/* The order of the following is important.

lower number indicates a machine type that
only accepts a subset of the instructions
available to machines with higher numbers.
The exception is the "ca", which is

Chapter 2: BFD Front End 144

incompatible with all other machines except
"core". */

#define bfd_mach_i960_core 1
#define bfd_mach_i960_ka_sa 2
#define bfd_mach_i960_kb_sb 3
#define bfd_mach_i960_mc 4
#define bfd_mach_i960_xa 5
#define bfd_mach_i960_ca 6
#define bfd_mach_i960_jx 7
#define bfd_mach_i960_hx 8

bfd_arch_or1k, /* OpenRISC 1000 */
#define bfd_mach_or1k 1
#define bfd_mach_or1knd 2

bfd_arch_sparc, /* SPARC */
#define bfd_mach_sparc 1
/* The difference between v8plus and v9 is that v9 is a true 64 bit env. */
#define bfd_mach_sparc_sparclet 2
#define bfd_mach_sparc_sparclite 3
#define bfd_mach_sparc_v8plus 4
#define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add’ns. */
#define bfd_mach_sparc_sparclite_le 6
#define bfd_mach_sparc_v9 7
#define bfd_mach_sparc_v9a 8 /* with ultrasparc add’ns. */
#define bfd_mach_sparc_v8plusb 9 /* with cheetah add’ns. */
#define bfd_mach_sparc_v9b 10 /* with cheetah add’ns. */
/* Nonzero if MACH has the v9 instruction set. */
#define bfd_mach_sparc_v9_p(mach) \
((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
&& (mach) != bfd_mach_sparc_sparclite_le)

/* Nonzero if MACH is a 64 bit sparc architecture. */
#define bfd_mach_sparc_64bit_p(mach) \
((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)
bfd_arch_spu, /* PowerPC SPU */

#define bfd_mach_spu 256
bfd_arch_mips, /* MIPS Rxxxx */

#define bfd_mach_mips3000 3000
#define bfd_mach_mips3900 3900
#define bfd_mach_mips4000 4000
#define bfd_mach_mips4010 4010
#define bfd_mach_mips4100 4100
#define bfd_mach_mips4111 4111
#define bfd_mach_mips4120 4120
#define bfd_mach_mips4300 4300
#define bfd_mach_mips4400 4400

Chapter 2: BFD Front End 145

#define bfd_mach_mips4600 4600
#define bfd_mach_mips4650 4650
#define bfd_mach_mips5000 5000
#define bfd_mach_mips5400 5400
#define bfd_mach_mips5500 5500
#define bfd_mach_mips5900 5900
#define bfd_mach_mips6000 6000
#define bfd_mach_mips7000 7000
#define bfd_mach_mips8000 8000
#define bfd_mach_mips9000 9000
#define bfd_mach_mips10000 10000
#define bfd_mach_mips12000 12000
#define bfd_mach_mips14000 14000
#define bfd_mach_mips16000 16000
#define bfd_mach_mips16 16
#define bfd_mach_mips5 5
#define bfd_mach_mips_loongson_2e 3001
#define bfd_mach_mips_loongson_2f 3002
#define bfd_mach_mips_loongson_3a 3003
#define bfd_mach_mips_sb1 12310201 /* octal ’SB’, 01 */
#define bfd_mach_mips_octeon 6501
#define bfd_mach_mips_octeonp 6601
#define bfd_mach_mips_octeon2 6502
#define bfd_mach_mips_octeon3 6503
#define bfd_mach_mips_xlr 887682 /* decimal ’XLR’ */
#define bfd_mach_mipsisa32 32
#define bfd_mach_mipsisa32r2 33
#define bfd_mach_mipsisa32r3 34
#define bfd_mach_mipsisa32r5 36
#define bfd_mach_mipsisa32r6 37
#define bfd_mach_mipsisa64 64
#define bfd_mach_mipsisa64r2 65
#define bfd_mach_mipsisa64r3 66
#define bfd_mach_mipsisa64r5 68
#define bfd_mach_mipsisa64r6 69
#define bfd_mach_mips_micromips 96
bfd_arch_i386, /* Intel 386 */

#define bfd_mach_i386_intel_syntax (1 << 0)
#define bfd_mach_i386_i8086 (1 << 1)
#define bfd_mach_i386_i386 (1 << 2)
#define bfd_mach_x86_64 (1 << 3)
#define bfd_mach_x64_32 (1 << 4)
#define bfd_mach_i386_i386_intel_syntax (bfd_mach_i386_i386 | bfd_mach_i386_intel_syntax)
#define bfd_mach_x86_64_intel_syntax (bfd_mach_x86_64 | bfd_mach_i386_intel_syntax)
#define bfd_mach_x64_32_intel_syntax (bfd_mach_x64_32 | bfd_mach_i386_intel_syntax)
bfd_arch_l1om, /* Intel L1OM */

#define bfd_mach_l1om (1 << 5)

Chapter 2: BFD Front End 146

#define bfd_mach_l1om_intel_syntax (bfd_mach_l1om | bfd_mach_i386_intel_syntax)
bfd_arch_k1om, /* Intel K1OM */

#define bfd_mach_k1om (1 << 6)
#define bfd_mach_k1om_intel_syntax (bfd_mach_k1om | bfd_mach_i386_intel_syntax)
#define bfd_mach_i386_nacl (1 << 7)
#define bfd_mach_i386_i386_nacl (bfd_mach_i386_i386 | bfd_mach_i386_nacl)
#define bfd_mach_x86_64_nacl (bfd_mach_x86_64 | bfd_mach_i386_nacl)
#define bfd_mach_x64_32_nacl (bfd_mach_x64_32 | bfd_mach_i386_nacl)
bfd_arch_we32k, /* AT&T WE32xxx */
bfd_arch_tahoe, /* CCI/Harris Tahoe */
bfd_arch_i860, /* Intel 860 */
bfd_arch_i370, /* IBM 360/370 Mainframes */
bfd_arch_romp, /* IBM ROMP PC/RT */
bfd_arch_convex, /* Convex */
bfd_arch_m88k, /* Motorola 88xxx */
bfd_arch_m98k, /* Motorola 98xxx */
bfd_arch_pyramid, /* Pyramid Technology */
bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */

#define bfd_mach_h8300 1
#define bfd_mach_h8300h 2
#define bfd_mach_h8300s 3
#define bfd_mach_h8300hn 4
#define bfd_mach_h8300sn 5
#define bfd_mach_h8300sx 6
#define bfd_mach_h8300sxn 7
bfd_arch_pdp11, /* DEC PDP-11 */
bfd_arch_plugin,
bfd_arch_powerpc, /* PowerPC */

#define bfd_mach_ppc 32
#define bfd_mach_ppc64 64
#define bfd_mach_ppc_403 403
#define bfd_mach_ppc_403gc 4030
#define bfd_mach_ppc_405 405
#define bfd_mach_ppc_505 505
#define bfd_mach_ppc_601 601
#define bfd_mach_ppc_602 602
#define bfd_mach_ppc_603 603
#define bfd_mach_ppc_ec603e 6031
#define bfd_mach_ppc_604 604
#define bfd_mach_ppc_620 620
#define bfd_mach_ppc_630 630
#define bfd_mach_ppc_750 750
#define bfd_mach_ppc_860 860
#define bfd_mach_ppc_a35 35
#define bfd_mach_ppc_rs64ii 642
#define bfd_mach_ppc_rs64iii 643
#define bfd_mach_ppc_7400 7400

Chapter 2: BFD Front End 147

#define bfd_mach_ppc_e500 500
#define bfd_mach_ppc_e500mc 5001
#define bfd_mach_ppc_e500mc64 5005
#define bfd_mach_ppc_e5500 5006
#define bfd_mach_ppc_e6500 5007
#define bfd_mach_ppc_titan 83
#define bfd_mach_ppc_vle 84
bfd_arch_rs6000, /* IBM RS/6000 */

#define bfd_mach_rs6k 6000
#define bfd_mach_rs6k_rs1 6001
#define bfd_mach_rs6k_rsc 6003
#define bfd_mach_rs6k_rs2 6002
bfd_arch_hppa, /* HP PA RISC */

#define bfd_mach_hppa10 10
#define bfd_mach_hppa11 11
#define bfd_mach_hppa20 20
#define bfd_mach_hppa20w 25
bfd_arch_d10v, /* Mitsubishi D10V */

#define bfd_mach_d10v 1
#define bfd_mach_d10v_ts2 2
#define bfd_mach_d10v_ts3 3
bfd_arch_d30v, /* Mitsubishi D30V */
bfd_arch_dlx, /* DLX */
bfd_arch_m68hc11, /* Motorola 68HC11 */
bfd_arch_m68hc12, /* Motorola 68HC12 */

#define bfd_mach_m6812_default 0
#define bfd_mach_m6812 1
#define bfd_mach_m6812s 2
bfd_arch_m9s12x, /* Freescale S12X */
bfd_arch_m9s12xg, /* Freescale XGATE */
bfd_arch_z8k, /* Zilog Z8000 */

#define bfd_mach_z8001 1
#define bfd_mach_z8002 2
bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */
bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */

#define bfd_mach_sh 1
#define bfd_mach_sh2 0x20
#define bfd_mach_sh_dsp 0x2d
#define bfd_mach_sh2a 0x2a
#define bfd_mach_sh2a_nofpu 0x2b
#define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
#define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2
#define bfd_mach_sh2a_or_sh4 0x2a3
#define bfd_mach_sh2a_or_sh3e 0x2a4
#define bfd_mach_sh2e 0x2e
#define bfd_mach_sh3 0x30
#define bfd_mach_sh3_nommu 0x31

Chapter 2: BFD Front End 148

#define bfd_mach_sh3_dsp 0x3d
#define bfd_mach_sh3e 0x3e
#define bfd_mach_sh4 0x40
#define bfd_mach_sh4_nofpu 0x41
#define bfd_mach_sh4_nommu_nofpu 0x42
#define bfd_mach_sh4a 0x4a
#define bfd_mach_sh4a_nofpu 0x4b
#define bfd_mach_sh4al_dsp 0x4d
#define bfd_mach_sh5 0x50
bfd_arch_alpha, /* Dec Alpha */

#define bfd_mach_alpha_ev4 0x10
#define bfd_mach_alpha_ev5 0x20
#define bfd_mach_alpha_ev6 0x30
bfd_arch_arm, /* Advanced Risc Machines ARM. */

#define bfd_mach_arm_unknown 0
#define bfd_mach_arm_2 1
#define bfd_mach_arm_2a 2
#define bfd_mach_arm_3 3
#define bfd_mach_arm_3M 4
#define bfd_mach_arm_4 5
#define bfd_mach_arm_4T 6
#define bfd_mach_arm_5 7
#define bfd_mach_arm_5T 8
#define bfd_mach_arm_5TE 9
#define bfd_mach_arm_XScale 10
#define bfd_mach_arm_ep9312 11
#define bfd_mach_arm_iWMMXt 12
#define bfd_mach_arm_iWMMXt2 13
bfd_arch_nds32, /* Andes NDS32 */

#define bfd_mach_n1 1
#define bfd_mach_n1h 2
#define bfd_mach_n1h_v2 3
#define bfd_mach_n1h_v3 4
#define bfd_mach_n1h_v3m 5
bfd_arch_ns32k, /* National Semiconductors ns32000 */
bfd_arch_w65, /* WDC 65816 */
bfd_arch_tic30, /* Texas Instruments TMS320C30 */
bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */

#define bfd_mach_tic3x 30
#define bfd_mach_tic4x 40
bfd_arch_tic54x, /* Texas Instruments TMS320C54X */
bfd_arch_tic6x, /* Texas Instruments TMS320C6X */
bfd_arch_tic80, /* TI TMS320c80 (MVP) */
bfd_arch_v850, /* NEC V850 */
bfd_arch_v850_rh850,/* NEC V850 (using RH850 ABI) */

#define bfd_mach_v850 1
#define bfd_mach_v850e ’E’

Chapter 2: BFD Front End 149

#define bfd_mach_v850e1 ’1’
#define bfd_mach_v850e2 0x4532
#define bfd_mach_v850e2v3 0x45325633
#define bfd_mach_v850e3v5 0x45335635 /* (’E’|’3’|’V’|’5’) */
bfd_arch_arc, /* ARC Cores */

#define bfd_mach_arc_5 5
#define bfd_mach_arc_6 6
#define bfd_mach_arc_7 7
#define bfd_mach_arc_8 8
bfd_arch_m32c, /* Renesas M16C/M32C. */
#define bfd_mach_m16c 0x75
#define bfd_mach_m32c 0x78
bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */

#define bfd_mach_m32r 1 /* For backwards compatibility. */
#define bfd_mach_m32rx ’x’
#define bfd_mach_m32r2 ’2’
bfd_arch_mn10200, /* Matsushita MN10200 */
bfd_arch_mn10300, /* Matsushita MN10300 */

#define bfd_mach_mn10300 300
#define bfd_mach_am33 330
#define bfd_mach_am33_2 332
bfd_arch_fr30,

#define bfd_mach_fr30 0x46523330
bfd_arch_frv,

#define bfd_mach_frv 1
#define bfd_mach_frvsimple 2
#define bfd_mach_fr300 300
#define bfd_mach_fr400 400
#define bfd_mach_fr450 450
#define bfd_mach_frvtomcat 499 /* fr500 prototype */
#define bfd_mach_fr500 500
#define bfd_mach_fr550 550
bfd_arch_moxie, /* The moxie processor */

#define bfd_mach_moxie 1
bfd_arch_mcore,
bfd_arch_mep,

#define bfd_mach_mep 1
#define bfd_mach_mep_h1 0x6831
#define bfd_mach_mep_c5 0x6335
bfd_arch_metag,

#define bfd_mach_metag 1
bfd_arch_ia64, /* HP/Intel ia64 */

#define bfd_mach_ia64_elf64 64
#define bfd_mach_ia64_elf32 32
bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */

#define bfd_mach_ip2022 1
#define bfd_mach_ip2022ext 2

Chapter 2: BFD Front End 150

bfd_arch_iq2000, /* Vitesse IQ2000. */
#define bfd_mach_iq2000 1
#define bfd_mach_iq10 2
bfd_arch_epiphany, /* Adapteva EPIPHANY */

#define bfd_mach_epiphany16 1
#define bfd_mach_epiphany32 2
bfd_arch_mt,

#define bfd_mach_ms1 1
#define bfd_mach_mrisc2 2
#define bfd_mach_ms2 3
bfd_arch_pj,
bfd_arch_avr, /* Atmel AVR microcontrollers. */

#define bfd_mach_avr1 1
#define bfd_mach_avr2 2
#define bfd_mach_avr25 25
#define bfd_mach_avr3 3
#define bfd_mach_avr31 31
#define bfd_mach_avr35 35
#define bfd_mach_avr4 4
#define bfd_mach_avr5 5
#define bfd_mach_avr51 51
#define bfd_mach_avr6 6
#define bfd_mach_avrtiny 100
#define bfd_mach_avrxmega1 101
#define bfd_mach_avrxmega2 102
#define bfd_mach_avrxmega3 103
#define bfd_mach_avrxmega4 104
#define bfd_mach_avrxmega5 105
#define bfd_mach_avrxmega6 106
#define bfd_mach_avrxmega7 107
bfd_arch_bfin, /* ADI Blackfin */

#define bfd_mach_bfin 1
bfd_arch_cr16, /* National Semiconductor CompactRISC (ie CR16). */

#define bfd_mach_cr16 1
bfd_arch_cr16c, /* National Semiconductor CompactRISC. */

#define bfd_mach_cr16c 1
bfd_arch_crx, /* National Semiconductor CRX. */

#define bfd_mach_crx 1
bfd_arch_cris, /* Axis CRIS */

#define bfd_mach_cris_v0_v10 255
#define bfd_mach_cris_v32 32
#define bfd_mach_cris_v10_v32 1032
bfd_arch_rl78,

#define bfd_mach_rl78 0x75
bfd_arch_rx, /* Renesas RX. */

#define bfd_mach_rx 0x75
bfd_arch_s390, /* IBM s390 */

Chapter 2: BFD Front End 151

#define bfd_mach_s390_31 31
#define bfd_mach_s390_64 64
bfd_arch_score, /* Sunplus score */

#define bfd_mach_score3 3
#define bfd_mach_score7 7
bfd_arch_mmix, /* Donald Knuth’s educational processor. */
bfd_arch_xstormy16,

#define bfd_mach_xstormy16 1
bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */

#define bfd_mach_msp11 11
#define bfd_mach_msp110 110
#define bfd_mach_msp12 12
#define bfd_mach_msp13 13
#define bfd_mach_msp14 14
#define bfd_mach_msp15 15
#define bfd_mach_msp16 16
#define bfd_mach_msp20 20
#define bfd_mach_msp21 21
#define bfd_mach_msp22 22
#define bfd_mach_msp23 23
#define bfd_mach_msp24 24
#define bfd_mach_msp26 26
#define bfd_mach_msp31 31
#define bfd_mach_msp32 32
#define bfd_mach_msp33 33
#define bfd_mach_msp41 41
#define bfd_mach_msp42 42
#define bfd_mach_msp43 43
#define bfd_mach_msp44 44
#define bfd_mach_msp430x 45
#define bfd_mach_msp46 46
#define bfd_mach_msp47 47
#define bfd_mach_msp54 54
bfd_arch_xc16x, /* Infineon’s XC16X Series. */

#define bfd_mach_xc16x 1
#define bfd_mach_xc16xl 2
#define bfd_mach_xc16xs 3
bfd_arch_xgate, /* Freescale XGATE */

#define bfd_mach_xgate 1
bfd_arch_xtensa, /* Tensilica’s Xtensa cores. */

#define bfd_mach_xtensa 1
bfd_arch_z80,

#define bfd_mach_z80strict 1 /* No undocumented opcodes. */
#define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */
#define bfd_mach_z80full 7 /* All undocumented instructions. */
#define bfd_mach_r800 11 /* R800: successor with multiplication. */
bfd_arch_lm32, /* Lattice Mico32 */

Chapter 2: BFD Front End 152

#define bfd_mach_lm32 1
bfd_arch_microblaze,/* Xilinx MicroBlaze. */
bfd_arch_tilepro, /* Tilera TILEPro */
bfd_arch_tilegx, /* Tilera TILE-Gx */

#define bfd_mach_tilepro 1
#define bfd_mach_tilegx 1
#define bfd_mach_tilegx32 2
bfd_arch_aarch64, /* AArch64 */

#define bfd_mach_aarch64 0
#define bfd_mach_aarch64_ilp32 32
bfd_arch_nios2,

#define bfd_mach_nios2 0
bfd_arch_visium, /* Visium */

#define bfd_mach_visium 1
bfd_arch_last
};

2.13.2 bfd arch info

Description
This structure contains information on architectures for use within BFD.

typedef struct bfd_arch_info
{
int bits_per_word;
int bits_per_address;
int bits_per_byte;
enum bfd_architecture arch;
unsigned long mach;
const char *arch_name;
const char *printable_name;
unsigned int section_align_power;
/* TRUE if this is the default machine for the architecture.

The default arch should be the first entry for an arch so that
all the entries for that arch can be accessed via next. */

bfd_boolean the_default;
const struct bfd_arch_info * (*compatible)
(const struct bfd_arch_info *a, const struct bfd_arch_info *b);

bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);

/* Allocate via bfd_malloc and return a fill buffer of size COUNT. If
IS_BIGENDIAN is TRUE, the order of bytes is big endian. If CODE is
TRUE, the buffer contains code. */

void *(*fill) (bfd_size_type count, bfd_boolean is_bigendian,
bfd_boolean code);

Chapter 2: BFD Front End 153

const struct bfd_arch_info *next;
}
bfd_arch_info_type;

2.13.2.1 bfd_printable_name

Synopsis

const char *bfd_printable_name (bfd *abfd);

Description
Return a printable string representing the architecture and machine from the pointer to the
architecture info structure.

2.13.2.2 bfd_scan_arch

Synopsis

const bfd_arch_info_type *bfd_scan_arch (const char *string);

Description
Figure out if BFD supports any cpu which could be described with the name string. Return
a pointer to an arch_info structure if a machine is found, otherwise NULL.

2.13.2.3 bfd_arch_list

Synopsis

const char **bfd_arch_list (void);

Description
Return a freshly malloced NULL-terminated vector of the names of all the valid BFD
architectures. Do not modify the names.

2.13.2.4 bfd_arch_get_compatible

Synopsis

const bfd_arch_info_type *bfd_arch_get_compatible
(const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);

Description
Determine whether two BFDs’ architectures and machine types are compatible. Calculates
the lowest common denominator between the two architectures and machine types implied
by the BFDs and returns a pointer to an arch_info structure describing the compatible
machine.

2.13.2.5 bfd_default_arch_struct

Description
The bfd_default_arch_struct is an item of bfd_arch_info_type which has been initial-
ized to a fairly generic state. A BFD starts life by pointing to this structure, until the
correct back end has determined the real architecture of the file.

extern const bfd_arch_info_type bfd_default_arch_struct;

Chapter 2: BFD Front End 154

2.13.2.6 bfd_set_arch_info

Synopsis

void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);

Description
Set the architecture info of abfd to arg.

2.13.2.7 bfd_default_set_arch_mach

Synopsis

bfd_boolean bfd_default_set_arch_mach
(bfd *abfd, enum bfd_architecture arch, unsigned long mach);

Description
Set the architecture and machine type in BFD abfd to arch and mach. Find the correct
pointer to a structure and insert it into the arch_info pointer.

2.13.2.8 bfd_get_arch

Synopsis

enum bfd_architecture bfd_get_arch (bfd *abfd);

Description
Return the enumerated type which describes the BFD abfd’s architecture.

2.13.2.9 bfd_get_mach

Synopsis

unsigned long bfd_get_mach (bfd *abfd);

Description
Return the long type which describes the BFD abfd’s machine.

2.13.2.10 bfd_arch_bits_per_byte

Synopsis

unsigned int bfd_arch_bits_per_byte (bfd *abfd);

Description
Return the number of bits in one of the BFD abfd’s architecture’s bytes.

2.13.2.11 bfd_arch_bits_per_address

Synopsis

unsigned int bfd_arch_bits_per_address (bfd *abfd);

Description
Return the number of bits in one of the BFD abfd’s architecture’s addresses.

2.13.2.12 bfd_default_compatible

Synopsis

const bfd_arch_info_type *bfd_default_compatible
(const bfd_arch_info_type *a, const bfd_arch_info_type *b);

Description
The default function for testing for compatibility.

Chapter 2: BFD Front End 155

2.13.2.13 bfd_default_scan

Synopsis

bfd_boolean bfd_default_scan
(const struct bfd_arch_info *info, const char *string);

Description
The default function for working out whether this is an architecture hit and a machine hit.

2.13.2.14 bfd_get_arch_info

Synopsis

const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);

Description
Return the architecture info struct in abfd.

2.13.2.15 bfd_lookup_arch

Synopsis

const bfd_arch_info_type *bfd_lookup_arch
(enum bfd_architecture arch, unsigned long machine);

Description
Look for the architecture info structure which matches the arguments arch and machine. A
machine of 0 matches the machine/architecture structure which marks itself as the default.

2.13.2.16 bfd_printable_arch_mach

Synopsis

const char *bfd_printable_arch_mach
(enum bfd_architecture arch, unsigned long machine);

Description
Return a printable string representing the architecture and machine type.
This routine is depreciated.

2.13.2.17 bfd_octets_per_byte

Synopsis

unsigned int bfd_octets_per_byte (bfd *abfd);

Description
Return the number of octets (8-bit quantities) per target byte (minimum addressable unit).
In most cases, this will be one, but some DSP targets have 16, 32, or even 48 bits per byte.

2.13.2.18 bfd_arch_mach_octets_per_byte

Synopsis

unsigned int bfd_arch_mach_octets_per_byte
(enum bfd_architecture arch, unsigned long machine);

Description
See bfd octets per byte.
This routine is provided for those cases where a bfd * is not available

Chapter 2: BFD Front End 156

2.13.2.19 bfd_arch_default_fill

Synopsis

void *bfd_arch_default_fill (bfd_size_type count,
bfd_boolean is_bigendian,
bfd_boolean code);

Description
Allocate via bfd malloc and return a fill buffer of size COUNT. If IS BIGENDIAN is TRUE,
the order of bytes is big endian. If CODE is TRUE, the buffer contains code.

/* Set to N to open the next N BFDs using an alternate id space. */
extern unsigned int bfd_use_reserved_id;

2.14 Opening and closing BFDs

2.14.1 Functions for opening and closing

2.14.1.1 bfd_fopen

Synopsis

bfd *bfd_fopen (const char *filename, const char *target,
const char *mode, int fd);

Description
Open the file filename with the target target. Return a pointer to the created BFD. If fd
is not -1, then fdopen is used to open the file; otherwise, fopen is used. mode is passed
directly to fopen or fdopen.

Calls bfd_find_target, so target is interpreted as by that function.

The new BFD is marked as cacheable iff fd is -1.

If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory,
bfd_error_invalid_target or system_call error.

On error, fd is always closed.

A copy of the filename argument is stored in the newly created BFD. It can be accessed
via the bfd get filename() macro.

2.14.1.2 bfd_openr

Synopsis

bfd *bfd_openr (const char *filename, const char *target);

Description
Open the file filename (using fopen) with the target target. Return a pointer to the created
BFD.

Calls bfd_find_target, so target is interpreted as by that function.

If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory,
bfd_error_invalid_target or system_call error.

A copy of the filename argument is stored in the newly created BFD. It can be accessed
via the bfd get filename() macro.

Chapter 2: BFD Front End 157

2.14.1.3 bfd_fdopenr

Synopsis

bfd *bfd_fdopenr (const char *filename, const char *target, int fd);

Description
bfd_fdopenr is to bfd_fopenr much like fdopen is to fopen. It opens a BFD on a file
already described by the fd supplied.

When the file is later bfd_closed, the file descriptor will be closed. If the caller desires that
this file descriptor be cached by BFD (opened as needed, closed as needed to free descriptors
for other opens), with the supplied fd used as an initial file descriptor (but subject to closure
at any time), call bfd set cacheable(bfd, 1) on the returned BFD. The default is to assume
no caching; the file descriptor will remain open until bfd_close, and will not be affected
by BFD operations on other files.

Possible errors are bfd_error_no_memory, bfd_error_invalid_target and bfd_error_
system_call.

On error, fd is closed.

A copy of the filename argument is stored in the newly created BFD. It can be accessed
via the bfd get filename() macro.

2.14.1.4 bfd_openstreamr

Synopsis

bfd *bfd_openstreamr (const char * filename, const char * target, void * stream);

Description
Open a BFD for read access on an existing stdio stream. When the BFD is passed to
bfd_close, the stream will be closed.

A copy of the filename argument is stored in the newly created BFD. It can be accessed
via the bfd get filename() macro.

2.14.1.5 bfd_openr_iovec

Synopsis

bfd *bfd_openr_iovec (const char *filename, const char *target,
void *(*open_func) (struct bfd *nbfd,
void *open_closure),
void *open_closure,
file_ptr (*pread_func) (struct bfd *nbfd,
void *stream,
void *buf,
file_ptr nbytes,
file_ptr offset),
int (*close_func) (struct bfd *nbfd,
void *stream),
int (*stat_func) (struct bfd *abfd,
void *stream,
struct stat *sb));

Chapter 2: BFD Front End 158

Description
Create and return a BFD backed by a read-only stream. The stream is created using
open func, accessed using pread func and destroyed using close func.

Calls bfd_find_target, so target is interpreted as by that function.

Calls open func (which can call bfd_zalloc and bfd_get_filename) to obtain the read-
only stream backing the BFD. open func either succeeds returning the non-NULL stream,
or fails returning NULL (setting bfd_error).

Calls pread func to request nbytes of data from stream starting at offset (e.g., via a call to
bfd_read). pread func either succeeds returning the number of bytes read (which can be
less than nbytes when end-of-file), or fails returning -1 (setting bfd_error).

Calls close func when the BFD is later closed using bfd_close. close func either succeeds
returning 0, or fails returning -1 (setting bfd_error).

Calls stat func to fill in a stat structure for bfd stat, bfd get size, and bfd get mtime calls.
stat func returns 0 on success, or returns -1 on failure (setting bfd_error).

If bfd_openr_iovec returns NULL then an error has occurred. Possible errors are bfd_
error_no_memory, bfd_error_invalid_target and bfd_error_system_call.

A copy of the filename argument is stored in the newly created BFD. It can be accessed
via the bfd get filename() macro.

2.14.1.6 bfd_openw

Synopsis

bfd *bfd_openw (const char *filename, const char *target);

Description
Create a BFD, associated with file filename, using the file format target, and return a
pointer to it.

Possible errors are bfd_error_system_call, bfd_error_no_memory, bfd_error_invalid_
target.

A copy of the filename argument is stored in the newly created BFD. It can be accessed
via the bfd get filename() macro.

2.14.1.7 bfd_close

Synopsis

bfd_boolean bfd_close (bfd *abfd);

Description
Close a BFD. If the BFD was open for writing, then pending operations are completed and
the file written out and closed. If the created file is executable, then chmod is called to mark
it as such.

All memory attached to the BFD is released.

The file descriptor associated with the BFD is closed (even if it was passed in to BFD by
bfd_fdopenr).

Returns
TRUE is returned if all is ok, otherwise FALSE.

Chapter 2: BFD Front End 159

2.14.1.8 bfd_close_all_done

Synopsis

bfd_boolean bfd_close_all_done (bfd *);

Description
Close a BFD. Differs from bfd_close since it does not complete any pending operations.
This routine would be used if the application had just used BFD for swapping and didn’t
want to use any of the writing code.

If the created file is executable, then chmod is called to mark it as such.

All memory attached to the BFD is released.

Returns
TRUE is returned if all is ok, otherwise FALSE.

2.14.1.9 bfd_create

Synopsis

bfd *bfd_create (const char *filename, bfd *templ);

Description
Create a new BFD in the manner of bfd_openw, but without opening a file. The new BFD
takes the target from the target used by templ. The format is always set to bfd_object.

A copy of the filename argument is stored in the newly created BFD. It can be accessed
via the bfd get filename() macro.

2.14.1.10 bfd_make_writable

Synopsis

bfd_boolean bfd_make_writable (bfd *abfd);

Description
Takes a BFD as created by bfd_create and converts it into one like as returned by bfd_
openw. It does this by converting the BFD to BFD IN MEMORY. It’s assumed that you
will call bfd_make_readable on this bfd later.

Returns
TRUE is returned if all is ok, otherwise FALSE.

2.14.1.11 bfd_make_readable

Synopsis

bfd_boolean bfd_make_readable (bfd *abfd);

Description
Takes a BFD as created by bfd_create and bfd_make_writable and converts it into one
like as returned by bfd_openr. It does this by writing the contents out to the memory
buffer, then reversing the direction.

Returns
TRUE is returned if all is ok, otherwise FALSE.

Chapter 2: BFD Front End 160

2.14.1.12 bfd_alloc

Synopsis

void *bfd_alloc (bfd *abfd, bfd_size_type wanted);

Description
Allocate a block of wanted bytes of memory attached to abfd and return a pointer to it.

2.14.1.13 bfd_alloc2

Synopsis

void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);

Description
Allocate a block of nmemb elements of size bytes each of memory attached to abfd and
return a pointer to it.

2.14.1.14 bfd_zalloc

Synopsis

void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);

Description
Allocate a block of wanted bytes of zeroed memory attached to abfd and return a pointer
to it.

2.14.1.15 bfd_zalloc2

Synopsis

void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);

Description
Allocate a block of nmemb elements of size bytes each of zeroed memory attached to abfd
and return a pointer to it.

2.14.1.16 bfd_calc_gnu_debuglink_crc32

Synopsis

unsigned long bfd_calc_gnu_debuglink_crc32
(unsigned long crc, const unsigned char *buf, bfd_size_type len);

Description
Computes a CRC value as used in the .gnu debuglink section. Advances the previously
computed crc value by computing and adding in the crc32 for len bytes of buf.
Returns
Return the updated CRC32 value.

2.14.1.17 bfd_get_debug_link_info

Synopsis

char *bfd_get_debug_link_info (bfd *abfd, unsigned long *crc32_out);

Description
Fetch the filename and CRC32 value for any separate debuginfo associated with abfd. Re-
turn NULL if no such info found, otherwise return filename and update crc32 out. The
returned filename is allocated with malloc; freeing it is the responsibility of the caller.

Chapter 2: BFD Front End 161

2.14.1.18 bfd_get_alt_debug_link_info

Synopsis

char *bfd_get_alt_debug_link_info (bfd * abfd,
bfd_size_type *buildid_len,
bfd_byte **buildid_out);

Description
Fetch the filename and BuildID value for any alternate debuginfo associated with abfd.
Return NULL if no such info found, otherwise return filename and update buildid len and
buildid out. The returned filename and build id are allocated with malloc; freeing them is
the responsibility of the caller.

2.14.1.19 separate_debug_file_exists

Synopsis

bfd_boolean separate_debug_file_exists
(char *name, unsigned long crc32);

Description
Checks to see if name is a file and if its contents match crc32.

2.14.1.20 separate_alt_debug_file_exists

Synopsis

bfd_boolean separate_alt_debug_file_exists
(char *name, unsigned long crc32);

Description
Checks to see if name is a file and if its BuildID matches buildid.

2.14.1.21 find_separate_debug_file

Synopsis

char *find_separate_debug_file (bfd *abfd);

Description
Searches abfd for a section called section name which is expected to contain a reference to
a file containing separate debugging information. The function scans various locations in
the filesystem, including the file tree rooted at debug file directory, and returns the first
matching filename that it finds. If check crc is TRUE then the contents of the file must
also match the CRC value contained in section name. Returns NULL if no valid file could
be found.

2.14.1.22 bfd_follow_gnu_debuglink

Synopsis

char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir);

Description
Takes a BFD and searches it for a .gnu debuglink section. If this section is found, it
examines the section for the name and checksum of a ’.debug’ file containing auxiliary
debugging information. It then searches the filesystem for this .debug file in some standard
locations, including the directory tree rooted at dir, and if found returns the full filename.

Chapter 2: BFD Front End 162

If dir is NULL, it will search a default path configured into libbfd at build time. [XXX this
feature is not currently implemented].

Returns
NULL on any errors or failure to locate the .debug file, otherwise a pointer to a heap-allocated
string containing the filename. The caller is responsible for freeing this string.

2.14.1.23 bfd_follow_gnu_debugaltlink

Synopsis

char *bfd_follow_gnu_debugaltlink (bfd *abfd, const char *dir);

Description
Takes a BFD and searches it for a .gnu debugaltlink section. If this section is found, it
examines the section for the name of a file containing auxiliary debugging information. It
then searches the filesystem for this file in a set of standard locations, including the directory
tree rooted at dir, and if found returns the full filename.

If dir is NULL, it will search a default path configured into libbfd at build time. [FIXME:
This feature is not currently implemented].

Returns
NULL on any errors or failure to locate the debug file, otherwise a pointer to a heap-allocated
string containing the filename. The caller is responsible for freeing this string.

2.14.1.24 bfd_create_gnu_debuglink_section

Synopsis

struct bfd_section *bfd_create_gnu_debuglink_section
(bfd *abfd, const char *filename);

Description
Takes a BFD and adds a .gnu debuglink section to it. The section is sized to be big enough
to contain a link to the specified filename.

Returns
A pointer to the new section is returned if all is ok. Otherwise NULL is returned and bfd error
is set.

2.14.1.25 bfd_fill_in_gnu_debuglink_section

Synopsis

bfd_boolean bfd_fill_in_gnu_debuglink_section
(bfd *abfd, struct bfd_section *sect, const char *filename);

Description
Takes a BFD and containing a .gnu debuglink section SECT and fills in the contents of the
section to contain a link to the specified filename. The filename should be relative to the
current directory.

Returns
TRUE is returned if all is ok. Otherwise FALSE is returned and bfd error is set.

Chapter 2: BFD Front End 163

2.15 Implementation details

2.15.1 Internal functions

Description
These routines are used within BFD. They are not intended for export, but are documented
here for completeness.

2.15.1.1 bfd_write_bigendian_4byte_int

Synopsis

bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);

Description
Write a 4 byte integer i to the output BFD abfd, in big endian order regardless of what else
is going on. This is useful in archives.

2.15.1.2 bfd_put_size

2.15.1.3 bfd_get_size

Description
These macros as used for reading and writing raw data in sections; each access (except for
bytes) is vectored through the target format of the BFD and mangled accordingly. The
mangling performs any necessary endian translations and removes alignment restrictions.
Note that types accepted and returned by these macros are identical so they can be swapped
around in macros—for example, ‘libaout.h’ defines GET_WORD to either bfd_get_32 or
bfd_get_64.

In the put routines, val must be a bfd_vma. If we are on a system without prototypes, the
caller is responsible for making sure that is true, with a cast if necessary. We don’t cast
them in the macro definitions because that would prevent lint or gcc -Wall from detecting
sins such as passing a pointer. To detect calling these with less than a bfd_vma, use gcc
-Wconversion on a host with 64 bit bfd_vma’s.

/* Byte swapping macros for user section data. */

#define bfd_put_8(abfd, val, ptr) \
((void) (*((unsigned char *) (ptr)) = (val) & 0xff))

#define bfd_put_signed_8 \
bfd_put_8

#define bfd_get_8(abfd, ptr) \
(*(const unsigned char *) (ptr) & 0xff)

#define bfd_get_signed_8(abfd, ptr) \
(((*(const unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)

#define bfd_put_16(abfd, val, ptr) \
BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))

#define bfd_put_signed_16 \
bfd_put_16

Chapter 2: BFD Front End 164

#define bfd_get_16(abfd, ptr) \
BFD_SEND (abfd, bfd_getx16, (ptr))

#define bfd_get_signed_16(abfd, ptr) \
BFD_SEND (abfd, bfd_getx_signed_16, (ptr))

#define bfd_put_32(abfd, val, ptr) \
BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))

#define bfd_put_signed_32 \
bfd_put_32

#define bfd_get_32(abfd, ptr) \
BFD_SEND (abfd, bfd_getx32, (ptr))

#define bfd_get_signed_32(abfd, ptr) \
BFD_SEND (abfd, bfd_getx_signed_32, (ptr))

#define bfd_put_64(abfd, val, ptr) \
BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))

#define bfd_put_signed_64 \
bfd_put_64

#define bfd_get_64(abfd, ptr) \
BFD_SEND (abfd, bfd_getx64, (ptr))

#define bfd_get_signed_64(abfd, ptr) \
BFD_SEND (abfd, bfd_getx_signed_64, (ptr))

#define bfd_get(bits, abfd, ptr) \
((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \
: (bits) == 16 ? bfd_get_16 (abfd, ptr) \
: (bits) == 32 ? bfd_get_32 (abfd, ptr) \
: (bits) == 64 ? bfd_get_64 (abfd, ptr) \
: (abort (), (bfd_vma) - 1))

#define bfd_put(bits, abfd, val, ptr) \
((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \
: (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \
: (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \
: (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \
: (abort (), (void) 0))

2.15.1.4 bfd_h_put_size

Description
These macros have the same function as their bfd_get_x brethren, except that they are
used for removing information for the header records of object files. Believe it or not, some
object files keep their header records in big endian order and their data in little endian
order.

/* Byte swapping macros for file header data. */

Chapter 2: BFD Front End 165

#define bfd_h_put_8(abfd, val, ptr) \
bfd_put_8 (abfd, val, ptr)

#define bfd_h_put_signed_8(abfd, val, ptr) \
bfd_put_8 (abfd, val, ptr)

#define bfd_h_get_8(abfd, ptr) \
bfd_get_8 (abfd, ptr)

#define bfd_h_get_signed_8(abfd, ptr) \
bfd_get_signed_8 (abfd, ptr)

#define bfd_h_put_16(abfd, val, ptr) \
BFD_SEND (abfd, bfd_h_putx16, (val, ptr))

#define bfd_h_put_signed_16 \
bfd_h_put_16

#define bfd_h_get_16(abfd, ptr) \
BFD_SEND (abfd, bfd_h_getx16, (ptr))

#define bfd_h_get_signed_16(abfd, ptr) \
BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))

#define bfd_h_put_32(abfd, val, ptr) \
BFD_SEND (abfd, bfd_h_putx32, (val, ptr))

#define bfd_h_put_signed_32 \
bfd_h_put_32

#define bfd_h_get_32(abfd, ptr) \
BFD_SEND (abfd, bfd_h_getx32, (ptr))

#define bfd_h_get_signed_32(abfd, ptr) \
BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))

#define bfd_h_put_64(abfd, val, ptr) \
BFD_SEND (abfd, bfd_h_putx64, (val, ptr))

#define bfd_h_put_signed_64 \
bfd_h_put_64

#define bfd_h_get_64(abfd, ptr) \
BFD_SEND (abfd, bfd_h_getx64, (ptr))

#define bfd_h_get_signed_64(abfd, ptr) \
BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))

/* Aliases for the above, which should eventually go away. */

#define H_PUT_64 bfd_h_put_64
#define H_PUT_32 bfd_h_put_32
#define H_PUT_16 bfd_h_put_16
#define H_PUT_8 bfd_h_put_8
#define H_PUT_S64 bfd_h_put_signed_64
#define H_PUT_S32 bfd_h_put_signed_32
#define H_PUT_S16 bfd_h_put_signed_16
#define H_PUT_S8 bfd_h_put_signed_8

Chapter 2: BFD Front End 166

#define H_GET_64 bfd_h_get_64
#define H_GET_32 bfd_h_get_32
#define H_GET_16 bfd_h_get_16
#define H_GET_8 bfd_h_get_8
#define H_GET_S64 bfd_h_get_signed_64
#define H_GET_S32 bfd_h_get_signed_32
#define H_GET_S16 bfd_h_get_signed_16
#define H_GET_S8 bfd_h_get_signed_8

2.15.1.5 bfd_log2

Synopsis

unsigned int bfd_log2 (bfd_vma x);

Description
Return the log base 2 of the value supplied, rounded up. E.g., an x of 1025 returns 11. A
x of 0 returns 0.

2.16 File caching

The file caching mechanism is embedded within BFD and allows the application to open as
many BFDs as it wants without regard to the underlying operating system’s file descriptor
limit (often as low as 20 open files). The module in cache.c maintains a least recently
used list of bfd_cache_max_open files, and exports the name bfd_cache_lookup, which
runs around and makes sure that the required BFD is open. If not, then it chooses a file to
close, closes it and opens the one wanted, returning its file handle.

2.16.1 Caching functions

2.16.1.1 bfd_cache_init

Synopsis

bfd_boolean bfd_cache_init (bfd *abfd);

Description
Add a newly opened BFD to the cache.

2.16.1.2 bfd_cache_close

Synopsis

bfd_boolean bfd_cache_close (bfd *abfd);

Description
Remove the BFD abfd from the cache. If the attached file is open, then close it too.
Returns
FALSE is returned if closing the file fails, TRUE is returned if all is well.

2.16.1.3 bfd_cache_close_all

Synopsis

Chapter 2: BFD Front End 167

bfd_boolean bfd_cache_close_all (void);

Description
Remove all BFDs from the cache. If the attached file is open, then close it too.
Returns
FALSE is returned if closing one of the file fails, TRUE is returned if all is well.

2.16.1.4 bfd_open_file

Synopsis

FILE* bfd_open_file (bfd *abfd);

Description
Call the OS to open a file for abfd. Return the FILE * (possibly NULL) that results from
this operation. Set up the BFD so that future accesses know the file is open. If the FILE *
returned is NULL, then it won’t have been put in the cache, so it won’t have to be removed
from it.

2.17 Linker Functions

The linker uses three special entry points in the BFD target vector. It is not necessary
to write special routines for these entry points when creating a new BFD back end, since
generic versions are provided. However, writing them can speed up linking and make it use
significantly less runtime memory.
The first routine creates a hash table used by the other routines. The second routine adds
the symbols from an object file to the hash table. The third routine takes all the object
files and links them together to create the output file. These routines are designed so that
the linker proper does not need to know anything about the symbols in the object files that
it is linking. The linker merely arranges the sections as directed by the linker script and
lets BFD handle the details of symbols and relocs.
The second routine and third routines are passed a pointer to a struct bfd_link_info
structure (defined in bfdlink.h) which holds information relevant to the link, including
the linker hash table (which was created by the first routine) and a set of callback functions
to the linker proper.
The generic linker routines are in linker.c, and use the header file genlink.h. As of this
writing, the only back ends which have implemented versions of these routines are a.out (in
aoutx.h) and ECOFF (in ecoff.c). The a.out routines are used as examples throughout
this section.

2.17.1 Creating a linker hash table

The linker routines must create a hash table, which must be derived from struct bfd_
link_hash_table described in bfdlink.c. See Section 2.18 [Hash Tables], page 173, for
information on how to create a derived hash table. This entry point is called using the
target vector of the linker output file.
The _bfd_link_hash_table_create entry point must allocate and initialize an instance
of the desired hash table. If the back end does not require any additional information to
be stored with the entries in the hash table, the entry point may simply create a struct
bfd_link_hash_table. Most likely, however, some additional information will be needed.

Chapter 2: BFD Front End 168

For example, with each entry in the hash table the a.out linker keeps the index the symbol
has in the final output file (this index number is used so that when doing a relocatable
link the symbol index used in the output file can be quickly filled in when copying over
a reloc). The a.out linker code defines the required structures and functions for a hash
table derived from struct bfd_link_hash_table. The a.out linker hash table is created
by the function NAME(aout,link_hash_table_create); it simply allocates space for the
hash table, initializes it, and returns a pointer to it.
When writing the linker routines for a new back end, you will generally not know exactly
which fields will be required until you have finished. You should simply create a new hash
table which defines no additional fields, and then simply add fields as they become necessary.

2.17.2 Adding symbols to the hash table

The linker proper will call the _bfd_link_add_symbols entry point for each object file or
archive which is to be linked (typically these are the files named on the command line, but
some may also come from the linker script). The entry point is responsible for examining
the file. For an object file, BFD must add any relevant symbol information to the hash
table. For an archive, BFD must determine which elements of the archive should be used
and adding them to the link.
The a.out version of this entry point is NAME(aout,link_add_symbols).

2.17.2.1 Differing file formats

Normally all the files involved in a link will be of the same format, but it is also possible
to link together different format object files, and the back end must support that. The
_bfd_link_add_symbols entry point is called via the target vector of the file to be added.
This has an important consequence: the function may not assume that the hash table is
the type created by the corresponding _bfd_link_hash_table_create vector. All the _
bfd_link_add_symbols function can assume about the hash table is that it is derived from
struct bfd_link_hash_table.
Sometimes the _bfd_link_add_symbols function must store some information in the hash
table entry to be used by the _bfd_final_link function. In such a case the output bfd
xvec must be checked to make sure that the hash table was created by an object file of the
same format.
The _bfd_final_link routine must be prepared to handle a hash entry without any extra
information added by the _bfd_link_add_symbols function. A hash entry without extra
information will also occur when the linker script directs the linker to create a symbol. Note
that, regardless of how a hash table entry is added, all the fields will be initialized to some
sort of null value by the hash table entry initialization function.
See ecoff_link_add_externals for an example of how to check the output bfd before
saving information (in this case, the ECOFF external symbol debugging information) in a
hash table entry.

2.17.2.2 Adding symbols from an object file

When the _bfd_link_add_symbols routine is passed an object file, it must add all ex-
ternally visible symbols in that object file to the hash table. The actual work of adding
the symbol to the hash table is normally handled by the function _bfd_generic_link_
add_one_symbol. The _bfd_link_add_symbols routine is responsible for reading all the

Chapter 2: BFD Front End 169

symbols from the object file and passing the correct information to _bfd_generic_link_
add_one_symbol.

The _bfd_link_add_symbols routine should not use bfd_canonicalize_symtab to read
the symbols. The point of providing this routine is to avoid the overhead of converting the
symbols into generic asymbol structures.

_bfd_generic_link_add_one_symbol handles the details of combining common symbols,
warning about multiple definitions, and so forth. It takes arguments which describe the
symbol to add, notably symbol flags, a section, and an offset. The symbol flags include
such things as BSF_WEAK or BSF_INDIRECT. The section is a section in the object file, or
something like bfd_und_section_ptr for an undefined symbol or bfd_com_section_ptr
for a common symbol.

If the _bfd_final_link routine is also going to need to read the symbol information,
the _bfd_link_add_symbols routine should save it somewhere attached to the object file
BFD. However, the information should only be saved if the keep_memory field of the info
argument is TRUE, so that the -no-keep-memory linker switch is effective.

The a.out function which adds symbols from an object file is aout_link_add_object_
symbols, and most of the interesting work is in aout_link_add_symbols. The latter saves
pointers to the hash tables entries created by _bfd_generic_link_add_one_symbol in-
dexed by symbol number, so that the _bfd_final_link routine does not have to call the
hash table lookup routine to locate the entry.

2.17.2.3 Adding symbols from an archive

When the _bfd_link_add_symbols routine is passed an archive, it must look through the
symbols defined by the archive and decide which elements of the archive should be included
in the link. For each such element it must call the add_archive_element linker callback,
and it must add the symbols from the object file to the linker hash table. (The callback
may in fact indicate that a replacement BFD should be used, in which case the symbols
from that BFD should be added to the linker hash table instead.)

In most cases the work of looking through the symbols in the archive should be done
by the _bfd_generic_link_add_archive_symbols function. _bfd_generic_link_add_
archive_symbols is passed a function to call to make the final decision about adding an
archive element to the link and to do the actual work of adding the symbols to the linker
hash table. If the element is to be included, the add_archive_element linker callback
routine must be called with the element as an argument, and the element’s symbols must
be added to the linker hash table just as though the element had itself been passed to the
_bfd_link_add_symbols function.

When the a.out _bfd_link_add_symbols function receives an archive, it calls
_bfd_generic_link_add_archive_symbols passing aout_link_check_archive_element
as the function argument. aout_link_check_archive_element calls aout_link_check_
ar_symbols. If the latter decides to add the element (an element is only added if it
provides a real, non-common, definition for a previously undefined or common symbol) it
calls the add_archive_element callback and then aout_link_check_archive_element
calls aout_link_add_symbols to actually add the symbols to the linker hash table -
possibly those of a substitute BFD, if the add_archive_element callback avails itself of
that option.

Chapter 2: BFD Front End 170

The ECOFF back end is unusual in that it does not normally call _bfd_generic_link_
add_archive_symbols, because ECOFF archives already contain a hash table of symbols.
The ECOFF back end searches the archive itself to avoid the overhead of creating a new
hash table.

2.17.3 Performing the final link

When all the input files have been processed, the linker calls the _bfd_final_link entry
point of the output BFD. This routine is responsible for producing the final output file,
which has several aspects. It must relocate the contents of the input sections and copy the
data into the output sections. It must build an output symbol table including any local
symbols from the input files and the global symbols from the hash table. When producing
relocatable output, it must modify the input relocs and write them into the output file.
There may also be object format dependent work to be done.

The linker will also call the write_object_contents entry point when the BFD is closed.
The two entry points must work together in order to produce the correct output file.

The details of how this works are inevitably dependent upon the specific object file format.
The a.out _bfd_final_link routine is NAME(aout,final_link).

2.17.3.1 Information provided by the linker

Before the linker calls the _bfd_final_link entry point, it sets up some data structures
for the function to use.

The input_bfds field of the bfd_link_info structure will point to a list of all the input
files included in the link. These files are linked through the link.next field of the bfd
structure.

Each section in the output file will have a list of link_order structures attached to the
map_head.link_order field (the link_order structure is defined in bfdlink.h). These
structures describe how to create the contents of the output section in terms of the contents
of various input sections, fill constants, and, eventually, other types of information. They
also describe relocs that must be created by the BFD backend, but do not correspond to
any input file; this is used to support -Ur, which builds constructors while generating a
relocatable object file.

2.17.3.2 Relocating the section contents

The _bfd_final_link function should look through the link_order structures attached
to each section of the output file. Each link_order structure should either be handled
specially, or it should be passed to the function _bfd_default_link_order which will do
the right thing (_bfd_default_link_order is defined in linker.c).

For efficiency, a link_order of type bfd_indirect_link_order whose associated section
belongs to a BFD of the same format as the output BFD must be handled specially. This
type of link_order describes part of an output section in terms of a section belonging
to one of the input files. The _bfd_final_link function should read the contents of the
section and any associated relocs, apply the relocs to the section contents, and write out
the modified section contents. If performing a relocatable link, the relocs themselves must
also be modified and written out.

Chapter 2: BFD Front End 171

The functions _bfd_relocate_contents and _bfd_final_link_relocate provide some
general support for performing the actual relocations, notably overflow checking. Their ar-
guments include information about the symbol the relocation is against and a reloc_howto_
type argument which describes the relocation to perform. These functions are defined in
reloc.c.

The a.out function which handles reading, relocating, and writing section contents is aout_
link_input_section. The actual relocation is done in aout_link_input_section_std
and aout_link_input_section_ext.

2.17.3.3 Writing the symbol table

The _bfd_final_link function must gather all the symbols in the input files and write
them out. It must also write out all the symbols in the global hash table. This must be
controlled by the strip and discard fields of the bfd_link_info structure.

The local symbols of the input files will not have been entered into the linker hash table.
The _bfd_final_link routine must consider each input file and include the symbols in
the output file. It may be convenient to do this when looking through the link_order
structures, or it may be done by stepping through the input_bfds list.

The _bfd_final_link routine must also traverse the global hash table to gather all the
externally visible symbols. It is possible that most of the externally visible symbols may
be written out when considering the symbols of each input file, but it is still necessary to
traverse the hash table since the linker script may have defined some symbols that are not
in any of the input files.

The strip field of the bfd_link_info structure controls which symbols are written out.
The possible values are listed in bfdlink.h. If the value is strip_some, then the keep_hash
field of the bfd_link_info structure is a hash table of symbols to keep; each symbol should
be looked up in this hash table, and only symbols which are present should be included in
the output file.

If the strip field of the bfd_link_info structure permits local symbols to be written out,
the discard field is used to further controls which local symbols are included in the output
file. If the value is discard_l, then all local symbols which begin with a certain prefix are
discarded; this is controlled by the bfd_is_local_label_name entry point.

The a.out backend handles symbols by calling aout_link_write_symbols on each input
BFD and then traversing the global hash table with the function aout_link_write_other_
symbol. It builds a string table while writing out the symbols, which is written to the output
file at the end of NAME(aout,final_link).

2.17.3.4 bfd_link_split_section

Synopsis

bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);

Description
Return nonzero if sec should be split during a reloceatable or final link.

#define bfd_link_split_section(abfd, sec) \
BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))

Chapter 2: BFD Front End 172

2.17.3.5 bfd_section_already_linked

Synopsis

bfd_boolean bfd_section_already_linked (bfd *abfd,
asection *sec,
struct bfd_link_info *info);

Description
Check if data has been already linked during a reloceatable or final link. Return TRUE if
it has.

#define bfd_section_already_linked(abfd, sec, info) \
BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))

2.17.3.6 bfd_generic_define_common_symbol

Synopsis

bfd_boolean bfd_generic_define_common_symbol
(bfd *output_bfd, struct bfd_link_info *info,
struct bfd_link_hash_entry *h);

Description
Convert common symbol h into a defined symbol. Return TRUE on success and FALSE on
failure.

#define bfd_define_common_symbol(output_bfd, info, h) \
BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))

2.17.3.7 bfd_find_version_for_sym

Synopsis

struct bfd_elf_version_tree * bfd_find_version_for_sym
(struct bfd_elf_version_tree *verdefs,
const char *sym_name, bfd_boolean *hide);

Description
Search an elf version script tree for symbol versioning info and export / don’t-export status
for a given symbol. Return non-NULL on success and NULL on failure; also sets the output
‘hide’ boolean parameter.

2.17.3.8 bfd_hide_sym_by_version

Synopsis

bfd_boolean bfd_hide_sym_by_version
(struct bfd_elf_version_tree *verdefs, const char *sym_name);

Description
Search an elf version script tree for symbol versioning info for a given symbol. Return
TRUE if the symbol is hidden.

Chapter 2: BFD Front End 173

2.18 Hash Tables

BFD provides a simple set of hash table functions. Routines are provided to initialize a
hash table, to free a hash table, to look up a string in a hash table and optionally create an
entry for it, and to traverse a hash table. There is currently no routine to delete an string
from a hash table.
The basic hash table does not permit any data to be stored with a string. However, a
hash table is designed to present a base class from which other types of hash tables may be
derived. These derived types may store additional information with the string. Hash tables
were implemented in this way, rather than simply providing a data pointer in a hash table
entry, because they were designed for use by the linker back ends. The linker may create
thousands of hash table entries, and the overhead of allocating private data and storing and
following pointers becomes noticeable.
The basic hash table code is in hash.c.

2.18.1 Creating and freeing a hash table

To create a hash table, create an instance of a struct bfd_hash_table (defined in bfd.h)
and call bfd_hash_table_init (if you know approximately how many entries you will
need, the function bfd_hash_table_init_n, which takes a size argument, may be used).
bfd_hash_table_init returns FALSE if some sort of error occurs.
The function bfd_hash_table_init take as an argument a function to use to create new
entries. For a basic hash table, use the function bfd_hash_newfunc. See Section 2.18.4
[Deriving a New Hash Table Type], page 174, for why you would want to use a different
value for this argument.
bfd_hash_table_init will create an objalloc which will be used to allocate new entries.
You may allocate memory on this objalloc using bfd_hash_allocate.
Use bfd_hash_table_free to free up all the memory that has been allocated for a hash
table. This will not free up the struct bfd_hash_table itself, which you must provide.
Use bfd_hash_set_default_size to set the default size of hash table to use.

2.18.2 Looking up or entering a string

The function bfd_hash_lookup is used both to look up a string in the hash table and to
create a new entry.
If the create argument is FALSE, bfd_hash_lookup will look up a string. If the string is
found, it will returns a pointer to a struct bfd_hash_entry. If the string is not found in
the table bfd_hash_lookup will return NULL. You should not modify any of the fields in
the returns struct bfd_hash_entry.
If the create argument is TRUE, the string will be entered into the hash table if it is not
already there. Either way a pointer to a struct bfd_hash_entry will be returned, either
to the existing structure or to a newly created one. In this case, a NULL return means that
an error occurred.
If the create argument is TRUE, and a new entry is created, the copy argument is used to
decide whether to copy the string onto the hash table objalloc or not. If copy is passed as
FALSE, you must be careful not to deallocate or modify the string as long as the hash table
exists.

Chapter 2: BFD Front End 174

2.18.3 Traversing a hash table

The function bfd_hash_traverse may be used to traverse a hash table, calling a function
on each element. The traversal is done in a random order.
bfd_hash_traverse takes as arguments a function and a generic void * pointer. The
function is called with a hash table entry (a struct bfd_hash_entry *) and the generic
pointer passed to bfd_hash_traverse. The function must return a boolean value, which
indicates whether to continue traversing the hash table. If the function returns FALSE,
bfd_hash_traverse will stop the traversal and return immediately.

2.18.4 Deriving a new hash table type

Many uses of hash tables want to store additional information which each entry in the hash
table. Some also find it convenient to store additional information with the hash table itself.
This may be done using a derived hash table.
Since C is not an object oriented language, creating a derived hash table requires sticking
together some boilerplate routines with a few differences specific to the type of hash table
you want to create.
An example of a derived hash table is the linker hash table. The structures for this are
defined in bfdlink.h. The functions are in linker.c.
You may also derive a hash table from an already derived hash table. For example, the
a.out linker backend code uses a hash table derived from the linker hash table.

2.18.4.1 Define the derived structures

You must define a structure for an entry in the hash table, and a structure for the hash
table itself.
The first field in the structure for an entry in the hash table must be of the type used for an
entry in the hash table you are deriving from. If you are deriving from a basic hash table
this is struct bfd_hash_entry, which is defined in bfd.h. The first field in the structure
for the hash table itself must be of the type of the hash table you are deriving from itself.
If you are deriving from a basic hash table, this is struct bfd_hash_table.
For example, the linker hash table defines struct bfd_link_hash_entry (in bfdlink.h).
The first field, root, is of type struct bfd_hash_entry. Similarly, the first field in struct
bfd_link_hash_table, table, is of type struct bfd_hash_table.

2.18.4.2 Write the derived creation routine

You must write a routine which will create and initialize an entry in the hash table. This
routine is passed as the function argument to bfd_hash_table_init.
In order to permit other hash tables to be derived from the hash table you are creating,
this routine must be written in a standard way.
The first argument to the creation routine is a pointer to a hash table entry. This may be
NULL, in which case the routine should allocate the right amount of space. Otherwise the
space has already been allocated by a hash table type derived from this one.
After allocating space, the creation routine must call the creation routine of the hash table
type it is derived from, passing in a pointer to the space it just allocated. This will initialize
any fields used by the base hash table.

Chapter 2: BFD Front End 175

Finally the creation routine must initialize any local fields for the new hash table type.

Here is a boilerplate example of a creation routine. function name is the name of the routine.
entry type is the type of an entry in the hash table you are creating. base newfunc is the
name of the creation routine of the hash table type your hash table is derived from.

struct bfd_hash_entry *
function_name (struct bfd_hash_entry *entry,

struct bfd_hash_table *table,
const char *string)

{
struct entry_type *ret = (entry_type *) entry;

/* Allocate the structure if it has not already been allocated by a
derived class. */

if (ret == NULL)
{

ret = bfd_hash_allocate (table, sizeof (* ret));
if (ret == NULL)
return NULL;

}

/* Call the allocation method of the base class. */
ret = ((entry_type *)

base_newfunc ((struct bfd_hash_entry *) ret, table, string));

/* Initialize the local fields here. */

return (struct bfd_hash_entry *) ret;
}

Description
The creation routine for the linker hash table, which is in linker.c, looks just like this
example. function name is _bfd_link_hash_newfunc. entry type is struct bfd_link_
hash_entry. base newfunc is bfd_hash_newfunc, the creation routine for a basic hash
table.

_bfd_link_hash_newfunc also initializes the local fields in a linker hash table entry: type,
written and next.

2.18.4.3 Write other derived routines

You will want to write other routines for your new hash table, as well.

You will want an initialization routine which calls the initialization routine of the hash table
you are deriving from and initializes any other local fields. For the linker hash table, this
is _bfd_link_hash_table_init in linker.c.

You will want a lookup routine which calls the lookup routine of the hash table you are
deriving from and casts the result. The linker hash table uses bfd_link_hash_lookup in
linker.c (this actually takes an additional argument which it uses to decide how to return
the looked up value).

Chapter 2: BFD Front End 176

You may want a traversal routine. This should just call the traversal routine of the hash
table you are deriving from with appropriate casts. The linker hash table uses bfd_link_
hash_traverse in linker.c.
These routines may simply be defined as macros. For example, the a.out backend linker
hash table, which is derived from the linker hash table, uses macros for the lookup and
traversal routines. These are aout_link_hash_lookup and aout_link_hash_traverse in
aoutx.h.

Chapter 3: BFD back ends 177

3 BFD back ends

3.1 What to Put Where

All of BFD lives in one directory.

3.2 a.out backends

Description
BFD supports a number of different flavours of a.out format, though the major differences
are only the sizes of the structures on disk, and the shape of the relocation information.
The support is split into a basic support file ‘aoutx.h’ and other files which derive functions
from the base. One derivation file is ‘aoutf1.h’ (for a.out flavour 1), and adds to the basic
a.out functions support for sun3, sun4, 386 and 29k a.out files, to create a target jump
vector for a specific target.
This information is further split out into more specific files for each machine, including
‘sunos.c’ for sun3 and sun4, ‘newsos3.c’ for the Sony NEWS, and ‘demo64.c’ for a demon-
stration of a 64 bit a.out format.
The base file ‘aoutx.h’ defines general mechanisms for reading and writing records to and
from disk and various other methods which BFD requires. It is included by ‘aout32.c’
and ‘aout64.c’ to form the names aout_32_swap_exec_header_in, aout_64_swap_exec_
header_in, etc.
As an example, this is what goes on to make the back end for a sun4, from ‘aout32.c’:

#define ARCH_SIZE 32
#include "aoutx.h"

Which exports names:
...
aout_32_canonicalize_reloc
aout_32_find_nearest_line
aout_32_get_lineno
aout_32_get_reloc_upper_bound
...

from ‘sunos.c’:
#define TARGET_NAME "a.out-sunos-big"
#define VECNAME sparc_aout_sunos_be_vec
#include "aoutf1.h"

requires all the names from ‘aout32.c’, and produces the jump vector
sparc_aout_sunos_be_vec

The file ‘host-aout.c’ is a special case. It is for a large set of hosts that use “more or less
standard” a.out files, and for which cross-debugging is not interesting. It uses the standard
32-bit a.out support routines, but determines the file offsets and addresses of the text, data,
and BSS sections, the machine architecture and machine type, and the entry point address,
in a host-dependent manner. Once these values have been determined, generic code is used
to handle the object file.
When porting it to run on a new system, you must supply:

Chapter 3: BFD back ends 178

HOST_PAGE_SIZE
HOST_SEGMENT_SIZE
HOST_MACHINE_ARCH (optional)
HOST_MACHINE_MACHINE (optional)
HOST_TEXT_START_ADDR
HOST_STACK_END_ADDR

in the file ‘../include/sys/h-XXX.h’ (for your host). These values, plus the structures
and macros defined in ‘a.out.h’ on your host system, will produce a BFD target that will
access ordinary a.out files on your host. To configure a new machine to use ‘host-aout.c’,
specify:

TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
TDEPFILES= host-aout.o trad-core.o

in the ‘config/XXX.mt’ file, and modify ‘configure.ac’ to use the ‘XXX.mt’ file (by setting
"bfd_target=XXX") when your configuration is selected.

3.2.1 Relocations

Description
The file ‘aoutx.h’ provides for both the standard and extended forms of a.out relocation
records.

The standard records contain only an address, a symbol index, and a type field. The
extended records (used on 29ks and sparcs) also have a full integer for an addend.

3.2.2 Internal entry points

Description
‘aoutx.h’ exports several routines for accessing the contents of an a.out file, which are
gathered and exported in turn by various format specific files (eg sunos.c).

3.2.2.1 aout_size_swap_exec_header_in

Synopsis

void aout_size_swap_exec_header_in,
(bfd *abfd,
struct external_exec *bytes,
struct internal_exec *execp);

Description
Swap the information in an executable header raw bytes taken from a raw byte stream
memory image into the internal exec header structure execp.

3.2.2.2 aout_size_swap_exec_header_out

Synopsis

void aout_size_swap_exec_header_out
(bfd *abfd,
struct internal_exec *execp,
struct external_exec *raw_bytes);

Chapter 3: BFD back ends 179

Description
Swap the information in an internal exec header structure execp into the buffer raw bytes
ready for writing to disk.

3.2.2.3 aout_size_some_aout_object_p

Synopsis

const bfd_target *aout_size_some_aout_object_p
(bfd *abfd,
struct internal_exec *execp,
const bfd_target *(*callback_to_real_object_p) (bfd *));

Description
Some a.out variant thinks that the file open in abfd checking is an a.out file. Do some more
checking, and set up for access if it really is. Call back to the calling environment’s "finish
up" function just before returning, to handle any last-minute setup.

3.2.2.4 aout_size_mkobject

Synopsis

bfd_boolean aout_size_mkobject, (bfd *abfd);

Description
Initialize BFD abfd for use with a.out files.

3.2.2.5 aout_size_machine_type

Synopsis

enum machine_type aout_size_machine_type
(enum bfd_architecture arch,
unsigned long machine,
bfd_boolean *unknown);

Description
Keep track of machine architecture and machine type for a.out’s. Return the machine_
type for a particular architecture and machine, or M_UNKNOWN if that exact architecture and
machine can’t be represented in a.out format.

If the architecture is understood, machine type 0 (default) is always understood.

3.2.2.6 aout_size_set_arch_mach

Synopsis

bfd_boolean aout_size_set_arch_mach,
(bfd *,
enum bfd_architecture arch,
unsigned long machine);

Description
Set the architecture and the machine of the BFD abfd to the values arch and machine.
Verify that abfd’s format can support the architecture required.

Chapter 3: BFD back ends 180

3.2.2.7 aout_size_new_section_hook

Synopsis

bfd_boolean aout_size_new_section_hook,
(bfd *abfd,
asection *newsect);

Description
Called by the BFD in response to a bfd_make_section request.

3.3 coff backends

BFD supports a number of different flavours of coff format. The major differences between
formats are the sizes and alignments of fields in structures on disk, and the occasional extra
field.
Coff in all its varieties is implemented with a few common files and a number of imple-
mentation specific files. For example, The 88k bcs coff format is implemented in the file
‘coff-m88k.c’. This file #includes ‘coff/m88k.h’ which defines the external structure
of the coff format for the 88k, and ‘coff/internal.h’ which defines the internal struc-
ture. ‘coff-m88k.c’ also defines the relocations used by the 88k format See Section 2.10
[Relocations], page 52.
The Intel i960 processor version of coff is implemented in ‘coff-i960.c’. This file has
the same structure as ‘coff-m88k.c’, except that it includes ‘coff/i960.h’ rather than
‘coff-m88k.h’.

3.3.1 Porting to a new version of coff

The recommended method is to select from the existing implementations the version of coff
which is most like the one you want to use. For example, we’ll say that i386 coff is the one
you select, and that your coff flavour is called foo. Copy ‘i386coff.c’ to ‘foocoff.c’, copy
‘../include/coff/i386.h’ to ‘../include/coff/foo.h’, and add the lines to ‘targets.c’
and ‘Makefile.in’ so that your new back end is used. Alter the shapes of the structures in
‘../include/coff/foo.h’ so that they match what you need. You will probably also have
to add #ifdefs to the code in ‘coff/internal.h’ and ‘coffcode.h’ if your version of coff
is too wild.
You can verify that your new BFD backend works quite simply by building ‘objdump’ from
the ‘binutils’ directory, and making sure that its version of what’s going on and your
host system’s idea (assuming it has the pretty standard coff dump utility, usually called
att-dump or just dump) are the same. Then clean up your code, and send what you’ve
done to Cygnus. Then your stuff will be in the next release, and you won’t have to keep
integrating it.

3.3.2 How the coff backend works

3.3.2.1 File layout

The Coff backend is split into generic routines that are applicable to any Coff target and
routines that are specific to a particular target. The target-specific routines are further split
into ones which are basically the same for all Coff targets except that they use the external
symbol format or use different values for certain constants.

Chapter 3: BFD back ends 181

The generic routines are in ‘coffgen.c’. These routines work for any Coff target. They
use some hooks into the target specific code; the hooks are in a bfd_coff_backend_data
structure, one of which exists for each target.
The essentially similar target-specific routines are in ‘coffcode.h’. This header file includes
executable C code. The various Coff targets first include the appropriate Coff header file,
make any special defines that are needed, and then include ‘coffcode.h’.
Some of the Coff targets then also have additional routines in the target source file itself.
For example, ‘coff-i960.c’ includes ‘coff/internal.h’ and ‘coff/i960.h’. It then de-
fines a few constants, such as I960, and includes ‘coffcode.h’. Since the i960 has complex
relocation types, ‘coff-i960.c’ also includes some code to manipulate the i960 relocs. This
code is not in ‘coffcode.h’ because it would not be used by any other target.

3.3.2.2 Coff long section names

In the standard Coff object format, section names are limited to the eight bytes available in
the s_name field of the SCNHDR section header structure. The format requires the field to be
NUL-padded, but not necessarily NUL-terminated, so the longest section names permitted
are a full eight characters.
The Microsoft PE variants of the Coff object file format add an extension to support the
use of long section names. This extension is defined in section 4 of the Microsoft PE/COFF
specification (rev 8.1). If a section name is too long to fit into the section header’s s_name
field, it is instead placed into the string table, and the s_name field is filled with a slash
("/") followed by the ASCII decimal representation of the offset of the full name relative
to the string table base.
Note that this implies that the extension can only be used in object files, as executables
do not contain a string table. The standard specifies that long section names from objects
emitted into executable images are to be truncated.
However, as a GNU extension, BFD can generate executable images that contain a string
table and long section names. This would appear to be technically valid, as the standard
only says that Coff debugging information is deprecated, not forbidden, and in practice
it works, although some tools that parse PE files expecting the MS standard format may
become confused; ‘PEview’ is one known example.
The functionality is supported in BFD by code implemented under the control of the macro
COFF_LONG_SECTION_NAMES. If not defined, the format does not support long section names
in any way. If defined, it is used to initialise a flag, _bfd_coff_long_section_names,
and a hook function pointer, _bfd_coff_set_long_section_names, in the Coff backend
data structure. The flag controls the generation of long section names in output BFDs at
runtime; if it is false, as it will be by default when generating an executable image, long
section names are truncated; if true, the long section names extension is employed. The
hook points to a function that allows the value of the flag to be altered at runtime, on
formats that support long section names at all; on other formats it points to a stub that
returns an error indication.
With input BFDs, the flag is set according to whether any long section names are detected
while reading the section headers. For a completely new BFD, the flag is set to the default
for the target format. This information can be used by a client of the BFD library when
deciding what output format to generate, and means that a BFD that is opened for read

Chapter 3: BFD back ends 182

and subsequently converted to a writeable BFD and modified in-place will retain whatever
format it had on input.

If COFF_LONG_SECTION_NAMES is simply defined (blank), or is defined to the value "1",
then long section names are enabled by default; if it is defined to the value zero, they are
disabled by default (but still accepted in input BFDs). The header ‘coffcode.h’ defines
a macro, COFF_DEFAULT_LONG_SECTION_NAMES, which is used in the backends to initialise
the backend data structure fields appropriately; see the comments for further detail.

3.3.2.3 Bit twiddling

Each flavour of coff supported in BFD has its own header file describing the external layout of
the structures. There is also an internal description of the coff layout, in ‘coff/internal.h’.
A major function of the coff backend is swapping the bytes and twiddling the bits to translate
the external form of the structures into the normal internal form. This is all performed in
the bfd_swap thing direction routines. Some elements are different sizes between different
versions of coff; it is the duty of the coff version specific include file to override the definitions
of various packing routines in ‘coffcode.h’. E.g., the size of line number entry in coff is
sometimes 16 bits, and sometimes 32 bits. #defineing PUT_LNSZ_LNNO and GET_LNSZ_
LNNO will select the correct one. No doubt, some day someone will find a version of coff
which has a varying field size not catered to at the moment. To port BFD, that person
will have to add more #defines. Three of the bit twiddling routines are exported to gdb;
coff_swap_aux_in, coff_swap_sym_in and coff_swap_lineno_in. GDB reads the symbol
table on its own, but uses BFD to fix things up. More of the bit twiddlers are exported
for gas; coff_swap_aux_out, coff_swap_sym_out, coff_swap_lineno_out, coff_swap_
reloc_out, coff_swap_filehdr_out, coff_swap_aouthdr_out, coff_swap_scnhdr_out.
Gas currently keeps track of all the symbol table and reloc drudgery itself, thereby saving
the internal BFD overhead, but uses BFD to swap things on the way out, making cross
ports much safer. Doing so also allows BFD (and thus the linker) to use the same header
files as gas, which makes one avenue to disaster disappear.

3.3.2.4 Symbol reading

The simple canonical form for symbols used by BFD is not rich enough to keep all the
information available in a coff symbol table. The back end gets around this problem by
keeping the original symbol table around, "behind the scenes".

When a symbol table is requested (through a call to bfd_canonicalize_symtab), a request
gets through to coff_get_normalized_symtab. This reads the symbol table from the coff
file and swaps all the structures inside into the internal form. It also fixes up all the pointers
in the table (represented in the file by offsets from the first symbol in the table) into physical
pointers to elements in the new internal table. This involves some work since the meanings
of fields change depending upon context: a field that is a pointer to another structure in the
symbol table at one moment may be the size in bytes of a structure at the next. Another
pass is made over the table. All symbols which mark file names (C_FILE symbols) are
modified so that the internal string points to the value in the auxent (the real filename)
rather than the normal text associated with the symbol (".file").

At this time the symbol names are moved around. Coff stores all symbols less than nine
characters long physically within the symbol table; longer strings are kept at the end of the

Chapter 3: BFD back ends 183

file in the string table. This pass moves all strings into memory and replaces them with
pointers to the strings.
The symbol table is massaged once again, this time to create the canonical table used by the
BFD application. Each symbol is inspected in turn, and a decision made (using the sclass
field) about the various flags to set in the asymbol. See Section 2.7 [Symbols], page 41.
The generated canonical table shares strings with the hidden internal symbol table.
Any linenumbers are read from the coff file too, and attached to the symbols which own
the functions the linenumbers belong to.

3.3.2.5 Symbol writing

Writing a symbol to a coff file which didn’t come from a coff file will lose any debugging
information. The asymbol structure remembers the BFD from which the symbol was taken,
and on output the back end makes sure that the same destination target as source target
is present.
When the symbols have come from a coff file then all the debugging information is preserved.
Symbol tables are provided for writing to the back end in a vector of pointers to pointers.
This allows applications like the linker to accumulate and output large symbol tables without
having to do too much byte copying.
This function runs through the provided symbol table and patches each symbol marked as
a file place holder (C_FILE) to point to the next file place holder in the list. It also marks
each offset field in the list with the offset from the first symbol of the current symbol.
Another function of this procedure is to turn the canonical value form of BFD into the form
used by coff. Internally, BFD expects symbol values to be offsets from a section base; so a
symbol physically at 0x120, but in a section starting at 0x100, would have the value 0x20.
Coff expects symbols to contain their final value, so symbols have their values changed
at this point to reflect their sum with their owning section. This transformation uses the
output_section field of the asymbol’s asection See Section 2.6 [Sections], page 22.
• coff_mangle_symbols

This routine runs though the provided symbol table and uses the offsets generated by the
previous pass and the pointers generated when the symbol table was read in to create the
structured hierarchy required by coff. It changes each pointer to a symbol into the index
into the symbol table of the asymbol.
• coff_write_symbols

This routine runs through the symbol table and patches up the symbols from their internal
form into the coff way, calls the bit twiddlers, and writes out the table to the file.

3.3.2.6 coff_symbol_type

Description
The hidden information for an asymbol is described in a combined_entry_type:

typedef struct coff_ptr_struct
{
/* Remembers the offset from the first symbol in the file for

this symbol. Generated by coff_renumber_symbols. */

Chapter 3: BFD back ends 184

unsigned int offset;

/* Should the value of this symbol be renumbered. Used for
XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */

unsigned int fix_value : 1;

/* Should the tag field of this symbol be renumbered.
Created by coff_pointerize_aux. */

unsigned int fix_tag : 1;

/* Should the endidx field of this symbol be renumbered.
Created by coff_pointerize_aux. */

unsigned int fix_end : 1;

/* Should the x_csect.x_scnlen field be renumbered.
Created by coff_pointerize_aux. */

unsigned int fix_scnlen : 1;

/* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the
index into the line number entries. Set by coff_slurp_symbol_table. */

unsigned int fix_line : 1;

/* The container for the symbol structure as read and translated
from the file. */

union
{
union internal_auxent auxent;
struct internal_syment syment;

} u;

/* Selector for the union above. */
bfd_boolean is_sym;
} combined_entry_type;

/* Each canonical asymbol really looks like this: */

typedef struct coff_symbol_struct
{
/* The actual symbol which the rest of BFD works with */
asymbol symbol;

/* A pointer to the hidden information for this symbol */
combined_entry_type *native;

/* A pointer to the linenumber information for this symbol */
struct lineno_cache_entry *lineno;

Chapter 3: BFD back ends 185

/* Have the line numbers been relocated yet ? */
bfd_boolean done_lineno;

} coff_symbol_type;

3.3.2.7 bfd_coff_backend_data

/* COFF symbol classifications. */

enum coff_symbol_classification
{
/* Global symbol. */
COFF_SYMBOL_GLOBAL,
/* Common symbol. */
COFF_SYMBOL_COMMON,
/* Undefined symbol. */
COFF_SYMBOL_UNDEFINED,
/* Local symbol. */
COFF_SYMBOL_LOCAL,
/* PE section symbol. */
COFF_SYMBOL_PE_SECTION

};

Special entry points for gdb to swap in coff symbol table parts:

typedef struct
{
void (*_bfd_coff_swap_aux_in)
(bfd *, void *, int, int, int, int, void *);

void (*_bfd_coff_swap_sym_in)
(bfd *, void *, void *);

void (*_bfd_coff_swap_lineno_in)
(bfd *, void *, void *);

unsigned int (*_bfd_coff_swap_aux_out)
(bfd *, void *, int, int, int, int, void *);

unsigned int (*_bfd_coff_swap_sym_out)
(bfd *, void *, void *);

unsigned int (*_bfd_coff_swap_lineno_out)
(bfd *, void *, void *);

unsigned int (*_bfd_coff_swap_reloc_out)
(bfd *, void *, void *);

Chapter 3: BFD back ends 186

unsigned int (*_bfd_coff_swap_filehdr_out)
(bfd *, void *, void *);

unsigned int (*_bfd_coff_swap_aouthdr_out)
(bfd *, void *, void *);

unsigned int (*_bfd_coff_swap_scnhdr_out)
(bfd *, void *, void *);

unsigned int _bfd_filhsz;
unsigned int _bfd_aoutsz;
unsigned int _bfd_scnhsz;
unsigned int _bfd_symesz;
unsigned int _bfd_auxesz;
unsigned int _bfd_relsz;
unsigned int _bfd_linesz;
unsigned int _bfd_filnmlen;
bfd_boolean _bfd_coff_long_filenames;

bfd_boolean _bfd_coff_long_section_names;
bfd_boolean (*_bfd_coff_set_long_section_names)
(bfd *, int);

unsigned int _bfd_coff_default_section_alignment_power;
bfd_boolean _bfd_coff_force_symnames_in_strings;
unsigned int _bfd_coff_debug_string_prefix_length;
unsigned int _bfd_coff_max_nscns;

void (*_bfd_coff_swap_filehdr_in)
(bfd *, void *, void *);

void (*_bfd_coff_swap_aouthdr_in)
(bfd *, void *, void *);

void (*_bfd_coff_swap_scnhdr_in)
(bfd *, void *, void *);

void (*_bfd_coff_swap_reloc_in)
(bfd *abfd, void *, void *);

bfd_boolean (*_bfd_coff_bad_format_hook)
(bfd *, void *);

bfd_boolean (*_bfd_coff_set_arch_mach_hook)
(bfd *, void *);

void * (*_bfd_coff_mkobject_hook)

Chapter 3: BFD back ends 187

(bfd *, void *, void *);

bfd_boolean (*_bfd_styp_to_sec_flags_hook)
(bfd *, void *, const char *, asection *, flagword *);

void (*_bfd_set_alignment_hook)
(bfd *, asection *, void *);

bfd_boolean (*_bfd_coff_slurp_symbol_table)
(bfd *);

bfd_boolean (*_bfd_coff_symname_in_debug)
(bfd *, struct internal_syment *);

bfd_boolean (*_bfd_coff_pointerize_aux_hook)
(bfd *, combined_entry_type *, combined_entry_type *,

unsigned int, combined_entry_type *);

bfd_boolean (*_bfd_coff_print_aux)
(bfd *, FILE *, combined_entry_type *, combined_entry_type *,

combined_entry_type *, unsigned int);

void (*_bfd_coff_reloc16_extra_cases)
(bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,

bfd_byte *, unsigned int *, unsigned int *);

int (*_bfd_coff_reloc16_estimate)
(bfd *, asection *, arelent *, unsigned int,

struct bfd_link_info *);

enum coff_symbol_classification (*_bfd_coff_classify_symbol)
(bfd *, struct internal_syment *);

bfd_boolean (*_bfd_coff_compute_section_file_positions)
(bfd *);

bfd_boolean (*_bfd_coff_start_final_link)
(bfd *, struct bfd_link_info *);

bfd_boolean (*_bfd_coff_relocate_section)
(bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,

struct internal_reloc *, struct internal_syment *, asection **);

reloc_howto_type *(*_bfd_coff_rtype_to_howto)
(bfd *, asection *, struct internal_reloc *,

struct coff_link_hash_entry *, struct internal_syment *,
bfd_vma *);

Chapter 3: BFD back ends 188

bfd_boolean (*_bfd_coff_adjust_symndx)
(bfd *, struct bfd_link_info *, bfd *, asection *,

struct internal_reloc *, bfd_boolean *);

bfd_boolean (*_bfd_coff_link_add_one_symbol)
(struct bfd_link_info *, bfd *, const char *, flagword,

asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean,
struct bfd_link_hash_entry **);

bfd_boolean (*_bfd_coff_link_output_has_begun)
(bfd *, struct coff_final_link_info *);

bfd_boolean (*_bfd_coff_final_link_postscript)
(bfd *, struct coff_final_link_info *);

bfd_boolean (*_bfd_coff_print_pdata)
(bfd *, void *);

} bfd_coff_backend_data;

#define coff_backend_info(abfd) \
((bfd_coff_backend_data *) (abfd)->xvec->backend_data)

#define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \
((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i))

#define bfd_coff_swap_sym_in(a,e,i) \
((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i))

#define bfd_coff_swap_lineno_in(a,e,i) \
((coff_backend_info (a)->_bfd_coff_swap_lineno_in) (a,e,i))

#define bfd_coff_swap_reloc_out(abfd, i, o) \
((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o))

#define bfd_coff_swap_lineno_out(abfd, i, o) \
((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o))

#define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \
((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o))

#define bfd_coff_swap_sym_out(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o))

#define bfd_coff_swap_scnhdr_out(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o))

Chapter 3: BFD back ends 189

#define bfd_coff_swap_filehdr_out(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o))

#define bfd_coff_swap_aouthdr_out(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o))

#define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz)
#define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz)
#define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz)
#define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz)
#define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz)
#define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz)
#define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz)
#define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen)
#define bfd_coff_long_filenames(abfd) \
(coff_backend_info (abfd)->_bfd_coff_long_filenames)

#define bfd_coff_long_section_names(abfd) \
(coff_backend_info (abfd)->_bfd_coff_long_section_names)

#define bfd_coff_set_long_section_names(abfd, enable) \
((coff_backend_info (abfd)->_bfd_coff_set_long_section_names) (abfd, enable))

#define bfd_coff_default_section_alignment_power(abfd) \
(coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power)

#define bfd_coff_max_nscns(abfd) \
(coff_backend_info (abfd)->_bfd_coff_max_nscns)

#define bfd_coff_swap_filehdr_in(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o))

#define bfd_coff_swap_aouthdr_in(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o))

#define bfd_coff_swap_scnhdr_in(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o))

#define bfd_coff_swap_reloc_in(abfd, i, o) \
((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o))

#define bfd_coff_bad_format_hook(abfd, filehdr) \
((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr))

#define bfd_coff_set_arch_mach_hook(abfd, filehdr)\
((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr))

#define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\
((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\
(abfd, filehdr, aouthdr))

Chapter 3: BFD back ends 190

#define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\
((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\
(abfd, scnhdr, name, section, flags_ptr))

#define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\
((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr))

#define bfd_coff_slurp_symbol_table(abfd)\
((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd))

#define bfd_coff_symname_in_debug(abfd, sym)\
((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym))

#define bfd_coff_force_symnames_in_strings(abfd)\
(coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings)

#define bfd_coff_debug_string_prefix_length(abfd)\
(coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length)

#define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\
((coff_backend_info (abfd)->_bfd_coff_print_aux)\
(abfd, file, base, symbol, aux, indaux))

#define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\
reloc, data, src_ptr, dst_ptr)\

((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\
(abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr))

#define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\
((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\
(abfd, section, reloc, shrink, link_info))

#define bfd_coff_classify_symbol(abfd, sym)\
((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\
(abfd, sym))

#define bfd_coff_compute_section_file_positions(abfd)\
((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\
(abfd))

#define bfd_coff_start_final_link(obfd, info)\
((coff_backend_info (obfd)->_bfd_coff_start_final_link)\
(obfd, info))

#define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\
((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\
(obfd, info, ibfd, o, con, rel, isyms, secs))

#define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\

Chapter 3: BFD back ends 191

((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\
(abfd, sec, rel, h, sym, addendp))

#define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\
((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\
(obfd, info, ibfd, sec, rel, adjustedp))

#define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\
value, string, cp, coll, hashp)\

((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\
(info, abfd, name, flags, section, value, string, cp, coll, hashp))

#define bfd_coff_link_output_has_begun(a,p) \
((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p))

#define bfd_coff_final_link_postscript(a,p) \
((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p))

#define bfd_coff_have_print_pdata(a) \
(coff_backend_info (a)->_bfd_coff_print_pdata)

#define bfd_coff_print_pdata(a,p) \
((coff_backend_info (a)->_bfd_coff_print_pdata) (a, p))

/* Macro: Returns true if the bfd is a PE executable as opposed to a
PE object file. */

#define bfd_pei_p(abfd) \
(CONST_STRNEQ ((abfd)->xvec->name, "pei-"))

3.3.2.8 Writing relocations

To write relocations, the back end steps though the canonical relocation table and create an
internal_reloc. The symbol index to use is removed from the offset field in the symbol
table supplied. The address comes directly from the sum of the section base address and the
relocation offset; the type is dug directly from the howto field. Then the internal_reloc
is swapped into the shape of an external_reloc and written out to disk.

3.3.2.9 Reading linenumbers

Creating the linenumber table is done by reading in the entire coff linenumber table, and
creating another table for internal use.
A coff linenumber table is structured so that each function is marked as having a line number
of 0. Each line within the function is an offset from the first line in the function. The base
of the line number information for the table is stored in the symbol associated with the
function.
Note: The PE format uses line number 0 for a flag indicating a new source file.
The information is copied from the external to the internal table, and each symbol which
marks a function is marked by pointing its...
How does this work ?

3.3.2.10 Reading relocations

Coff relocations are easily transformed into the internal BFD form (arelent).

Chapter 3: BFD back ends 192

Reading a coff relocation table is done in the following stages:
• Read the entire coff relocation table into memory.
• Process each relocation in turn; first swap it from the external to the internal form.
• Turn the symbol referenced in the relocation’s symbol index into a pointer into the

canonical symbol table. This table is the same as the one returned by a call to bfd_
canonicalize_symtab. The back end will call that routine and save the result if a
canonicalization hasn’t been done.

• The reloc index is turned into a pointer to a howto structure, in a back end specific
way. For instance, the 386 and 960 use the r_type to directly produce an index into a
howto table vector; the 88k subtracts a number from the r_type field and creates an
addend field.

3.4 ELF backends

BFD support for ELF formats is being worked on. Currently, the best supported back ends
are for sparc and i386 (running svr4 or Solaris 2).
Documentation of the internals of the support code still needs to be written. The code is
changing quickly enough that we haven’t bothered yet.

3.5 mmo backend

The mmo object format is used exclusively together with Professor Donald E.
Knuth’s educational 64-bit processor MMIX. The simulator mmix which is available
at http://mmix.cs.hm.edu/src/index.html understands this format. That package
also includes a combined assembler and linker called mmixal. The mmo format has no
advantages feature-wise compared to e.g. ELF. It is a simple non-relocatable object format
with no support for archives or debugging information, except for symbol value information
and line numbers (which is not yet implemented in BFD). See http://mmix.cs.hm.edu/
for more information about MMIX. The ELF format is used for intermediate object files
in the BFD implementation.

3.5.1 File layout

The mmo file contents is not partitioned into named sections as with e.g. ELF. Memory
areas is formed by specifying the location of the data that follows. Only the memory area
‘0x0000...00’ to ‘0x01ff...ff’ is executable, so it is used for code (and constants) and
the area ‘0x2000...00’ to ‘0x20ff...ff’ is used for writable data. See Section 3.5.3 [mmo
section mapping], page 196.
There is provision for specifying “special data” of 65536 different types. We use type 80
(decimal), arbitrarily chosen the same as the ELF e_machine number for MMIX, filling it
with section information normally found in ELF objects. See Section 3.5.3 [mmo section
mapping], page 196.
Contents is entered as 32-bit words, xor:ed over previous contents, always zero-initialized.
A word that starts with the byte ‘0x98’ forms a command called a ‘lopcode’, where the
next byte distinguished between the thirteen lopcodes. The two remaining bytes, called the
‘Y’ and ‘Z’ fields, or the ‘YZ’ field (a 16-bit big-endian number), are used for various purposes
different for each lopcode. As documented in http://mmix.cs.hm.edu/doc/mmixal.pdf,
the lopcodes are:

http://mmix.cs.hm.edu/src/index.html
http://mmix.cs.hm.edu/
http://mmix.cs.hm.edu/doc/mmixal.pdf

Chapter 3: BFD back ends 193

lop_quote
0x98000001. The next word is contents, regardless of whether it starts with
0x98 or not.

lop_loc 0x9801YYZZ, where ‘Z’ is 1 or 2. This is a location directive, setting the location
for the next data to the next 32-bit word (for Z = 1) or 64-bit word (for Z = 2),
plus Y ∗ 256. Normally ‘Y’ is 0 for the text segment and 2 for the data segment.
Beware that the low bits of non- tetrabyte-aligned values are silently discarded
when being automatically incremented and when storing contents (in contrast
to e.g. its use as current location when followed by lop fixo et al before the
next possibly-quoted tetrabyte contents).

lop_skip 0x9802YYZZ. Increase the current location by ‘YZ’ bytes.

lop_fixo 0x9803YYZZ, where ‘Z’ is 1 or 2. Store the current location as 64 bits into the
location pointed to by the next 32-bit (Z = 1) or 64-bit (Z = 2) word, plus
Y ∗ 256.

lop_fixr 0x9804YYZZ. ‘YZ’ is stored into the current location plus 2− 4 ∗ Y Z.

lop_fixrx
0x980500ZZ. ‘Z’ is 16 or 24. A value ‘L’ derived from the following 32-bit word
are used in a manner similar to ‘YZ’ in lop fixr: it is xor:ed into the current
location minus 4 ∗ L. The first byte of the word is 0 or 1. If it is 1, then
L = (lowest24bitsofword)− 2Z , if 0, then L = (lowest24bitsofword).

lop_file 0x9806YYZZ. ‘Y’ is the file number, ‘Z’ is count of 32-bit words. Set the file
number to ‘Y’ and the line counter to 0. The next Z ∗ 4 bytes contain the file
name, padded with zeros if the count is not a multiple of four. The same ‘Y’
may occur multiple times, but ‘Z’ must be 0 for all but the first occurrence.

lop_line 0x9807YYZZ. ‘YZ’ is the line number. Together with lop file, it forms the source
location for the next 32-bit word. Note that for each non-lopcode 32-bit word,
line numbers are assumed incremented by one.

lop_spec 0x9808YYZZ. ‘YZ’ is the type number. Data until the next lopcode other than
lop quote forms special data of type ‘YZ’. See Section 3.5.3 [mmo section map-
ping], page 196.
Other types than 80, (or type 80 with a content that does not parse) is stored
in sections named .MMIX.spec_data.n where n is the ‘YZ’-type. The flags for
such a sections say not to allocate or load the data. The vma is 0. Contents of
multiple occurrences of special data n is concatenated to the data of the previous
lop spec ns. The location in data or code at which the lop spec occurred is lost.

lop_pre 0x980901ZZ. The first lopcode in a file. The ‘Z’ field forms the length of header
information in 32-bit words, where the first word tells the time in seconds since
‘00:00:00 GMT Jan 1 1970’.

lop_post 0x980a00ZZ. Z > 32. This lopcode follows after all content-generating lopcodes
in a program. The ‘Z’ field denotes the value of ‘rG’ at the beginning of the
program. The following 256−Z big-endian 64-bit words are loaded into global
registers ‘$G’ . . . ‘$255’.

Chapter 3: BFD back ends 194

lop_stab 0x980b0000. The next-to-last lopcode in a program. Must follow immediately
after the lop post lopcode and its data. After this lopcode follows all symbols
in a compressed format (see Section 3.5.2 [Symbol-table], page 194).

lop_end 0x980cYYZZ. The last lopcode in a program. It must follow the lop stab lop-
code and its data. The ‘YZ’ field contains the number of 32-bit words of symbol
table information after the preceding lop stab lopcode.

Note that the lopcode "fixups"; lop_fixr, lop_fixrx and lop_fixo are not generated by
BFD, but are handled. They are generated by mmixal.
This trivial one-label, one-instruction file:

:Main TRAP 1,2,3

can be represented this way in mmo:
0x98090101 - lop_pre, one 32-bit word with timestamp.
<timestamp>
0x98010002 - lop_loc, text segment, using a 64-bit address.

Note that mmixal does not emit this for the file above.
0x00000000 - Address, high 32 bits.
0x00000000 - Address, low 32 bits.
0x98060002 - lop_file, 2 32-bit words for file-name.
0x74657374 - "test"
0x2e730000 - ".s\0\0"
0x98070001 - lop_line, line 1.
0x00010203 - TRAP 1,2,3
0x980a00ff - lop_post, setting $255 to 0.
0x00000000
0x00000000
0x980b0000 - lop_stab for ":Main" = 0, serial 1.
0x203a4040 See Section 3.5.2 [Symbol-table], page 194.
0x10404020
0x4d206120
0x69016e00
0x81000000
0x980c0005 - lop_end; symbol table contained five 32-bit words.

3.5.2 Symbol table format

From mmixal.w (or really, the generated mmixal.tex) in the MMIXware package which also
contains the mmix simulator: “Symbols are stored and retrieved by means of a ‘ternary
search trie’, following ideas of Bentley and Sedgewick. (See ACM–SIAM Symp. on Dis-
crete Algorithms ‘8’ (1997), 360–369; R.Sedgewick, ‘Algorithms in C’ (Reading, Mass.
Addison–Wesley, 1998), ‘15.4’.) Each trie node stores a character, and there are branches
to subtries for the cases where a given character is less than, equal to, or greater than the
character in the trie. There also is a pointer to a symbol table entry if a symbol ends at
the current node.”
So it’s a tree encoded as a stream of bytes. The stream of bytes acts on a single virtual global
symbol, adding and removing characters and signalling complete symbol points. Here, we
read the stream and create symbols at the completion points.

Chapter 3: BFD back ends 195

First, there’s a control byte m. If any of the listed bits in m is nonzero, we execute what
stands at the right, in the listed order:

(MMO3_LEFT)
0x40 - Traverse left trie.

(Read a new command byte and recurse.)

(MMO3_SYMBITS)
0x2f - Read the next byte as a character and store it in the

current character position; increment character position.
Test the bits of m:

(MMO3_WCHAR)
0x80 - The character is 16-bit (so read another byte,

merge into current character.

(MMO3_TYPEBITS)
0xf - We have a complete symbol; parse the type, value

and serial number and do what should be done
with a symbol. The type and length information
is in j = (m & 0xf).

(MMO3_REGQUAL_BITS)
j == 0xf: A register variable. The following

byte tells which register.
j <= 8: An absolute symbol. Read j bytes as the

big-endian number the symbol equals.
A j = 2 with two zero bytes denotes an
unknown symbol.

j > 8: As with j <= 8, but add (0x20 << 56)
to the value in the following j - 8
bytes.

Then comes the serial number, as a variant of
uleb128, but better named ubeb128:
Read bytes and shift the previous value left 7
(multiply by 128). Add in the new byte, repeat
until a byte has bit 7 set. The serial number
is the computed value minus 128.

(MMO3_MIDDLE)
0x20 - Traverse middle trie. (Read a new command byte

and recurse.) Decrement character position.

(MMO3_RIGHT)
0x10 - Traverse right trie. (Read a new command byte and

recurse.)

Chapter 3: BFD back ends 196

Let’s look again at the lop_stab for the trivial file (see Section 3.5.1 [File layout], page 192).

0x980b0000 - lop_stab for ":Main" = 0, serial 1.
0x203a4040
0x10404020
0x4d206120
0x69016e00
0x81000000

This forms the trivial trie (note that the path between “:” and “M” is redundant):

203a ":"
40 /
40 /
10 \
40 /
40 /
204d "M"
2061 "a"
2069 "i"
016e "n" is the last character in a full symbol, and

with a value represented in one byte.
00 The value is 0.
81 The serial number is 1.

3.5.3 mmo section mapping

The implementation in BFD uses special data type 80 (decimal) to encapsulate and describe
named sections, containing e.g. debug information. If needed, any datum in the encapsula-
tion will be quoted using lop quote. First comes a 32-bit word holding the number of 32-bit
words containing the zero-terminated zero-padded segment name. After the name there’s a
32-bit word holding flags describing the section type. Then comes a 64-bit big-endian word
with the section length (in bytes), then another with the section start address. Depending
on the type of section, the contents might follow, zero-padded to 32-bit boundary. For a
loadable section (such as data or code), the contents might follow at some later point, not
necessarily immediately, as a lop loc with the same start address as in the section descrip-
tion, followed by the contents. This in effect forms a descriptor that must be emitted before
the actual contents. Sections described this way must not overlap.

For areas that don’t have such descriptors, synthetic sections are formed by BFD. Consecu-
tive contents in the two memory areas ‘0x0000...00’ to ‘0x01ff...ff’ and ‘0x2000...00’
to ‘0x20ff...ff’ are entered in sections named .text and .data respectively. If an area
is not otherwise described, but would together with a neighboring lower area be less than
‘0x40000000’ bytes long, it is joined with the lower area and the gap is zero-filled. For other
cases, a new section is formed, named .MMIX.sec.n . Here, n is a number, a running count
through the mmo file, starting at 0.

A loadable section specified as:

.section secname,"ax"
TETRA 1,2,3,4,-1,-2009
BYTE 80

Chapter 3: BFD back ends 197

and linked to address ‘0x4’, is represented by the sequence:

0x98080050 - lop_spec 80
0x00000002 - two 32-bit words for the section name
0x7365636e - "secn"
0x616d6500 - "ame\0"
0x00000033 - flags CODE, READONLY, LOAD, ALLOC
0x00000000 - high 32 bits of section length
0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits
0x00000000 - high 32 bits of section address
0x00000004 - section address is 4
0x98010002 - 64 bits with address of following data
0x00000000 - high 32 bits of address
0x00000004 - low 32 bits: data starts at address 4
0x00000001 - 1
0x00000002 - 2
0x00000003 - 3
0x00000004 - 4
0xffffffff - -1
0xfffff827 - -2009
0x50000000 - 80 as a byte, padded with zeros.

Note that the lop spec wrapping does not include the section contents. Compare this to a
non-loaded section specified as:

.section thirdsec
TETRA 200001,100002
BYTE 38,40

This, when linked to address ‘0x200000000000001c’, is represented by:

0x98080050 - lop_spec 80
0x00000002 - two 32-bit words for the section name
0x7365636e - "thir"
0x616d6500 - "dsec"
0x00000010 - flag READONLY
0x00000000 - high 32 bits of section length
0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits
0x20000000 - high 32 bits of address
0x0000001c - low 32 bits of address 0x200000000000001c
0x00030d41 - 200001
0x000186a2 - 100002
0x26280000 - 38, 40 as bytes, padded with zeros

For the latter example, the section contents must not be loaded in memory, and is therefore
specified as part of the special data. The address is usually unimportant but might provide
information for e.g. the DWARF 2 debugging format.

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

http://fsf.org/

Chapter 3: BFD back ends 198

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under

Chapter 3: BFD back ends 199

this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document
to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.

Chapter 3: BFD back ends 200

If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

Chapter 3: BFD back ends 201

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

Chapter 3: BFD back ends 202

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

Chapter 3: BFD back ends 203

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that

http://www.gnu.org/copyleft/

Chapter 3: BFD back ends 204

specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Chapter 3: BFD back ends 205

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

BFD Index 206

BFD Index

(Index is nonexistent)

BFD Index 207

The body of this manual is set in
cmr10 at 10.95pt,

with headings in cmb10 at 10.95pt
and examples in cmtt10 at 10.95pt.

cmti10 at 10.95pt and
cmsl10 at 10.95pt

are used for emphasis.

	Introduction
	History
	How To Use BFD
	What BFD Version 2 Can Do
	Information Loss
	The BFD canonical object-file format

	BFD Front End
	typedef bfd
	Error reporting
	Type bfd_error_type
	bfd_get_error
	bfd_set_error
	bfd_errmsg
	bfd_perror

	BFD error handler
	bfd_set_error_handler
	bfd_set_error_program_name
	bfd_get_error_handler

	BFD assert handler
	bfd_set_assert_handler
	bfd_get_assert_handler

	Miscellaneous
	Miscellaneous functions
	bfd_get_reloc_upper_bound
	bfd_canonicalize_reloc
	bfd_set_reloc
	bfd_set_file_flags
	bfd_get_arch_size
	bfd_get_sign_extend_vma
	bfd_set_start_address
	bfd_get_gp_size
	bfd_set_gp_size
	bfd_scan_vma
	bfd_copy_private_header_data
	bfd_copy_private_bfd_data
	bfd_merge_private_bfd_data
	bfd_set_private_flags
	Other functions
	bfd_alt_mach_code
	bfd_emul_get_maxpagesize
	bfd_emul_set_maxpagesize
	bfd_emul_get_commonpagesize
	bfd_emul_set_commonpagesize
	bfd_demangle
	struct bfd_iovec
	bfd_get_mtime
	bfd_get_size
	bfd_mmap

	Memory Usage
	Initialization
	Initialization functions
	bfd_init

	Sections
	Section input
	Section output
	Link orders
	typedef asection
	Section prototypes
	bfd_section_list_clear
	bfd_get_section_by_name
	bfd_get_next_section_by_name
	bfd_get_linker_section
	bfd_get_section_by_name_if
	bfd_get_unique_section_name
	bfd_make_section_old_way
	bfd_make_section_anyway_with_flags
	bfd_make_section_anyway
	bfd_make_section_with_flags
	bfd_make_section
	bfd_set_section_flags
	bfd_rename_section
	bfd_map_over_sections
	bfd_sections_find_if
	bfd_set_section_size
	bfd_set_section_contents
	bfd_get_section_contents
	bfd_malloc_and_get_section
	bfd_copy_private_section_data
	bfd_generic_is_group_section
	bfd_generic_discard_group

	Symbols
	Reading symbols
	Writing symbols
	Mini Symbols
	typedef asymbol
	Symbol handling functions
	bfd_get_symtab_upper_bound
	bfd_is_local_label
	bfd_is_local_label_name
	bfd_is_target_special_symbol
	bfd_canonicalize_symtab
	bfd_set_symtab
	bfd_print_symbol_vandf
	bfd_make_empty_symbol
	_bfd_generic_make_empty_symbol
	bfd_make_debug_symbol
	bfd_decode_symclass
	bfd_is_undefined_symclass
	bfd_symbol_info
	bfd_copy_private_symbol_data

	Archives
	Archive functions
	bfd_get_next_mapent
	bfd_set_archive_head
	bfd_openr_next_archived_file

	File formats
	File format functions
	bfd_check_format
	bfd_check_format_matches
	bfd_set_format
	bfd_format_string

	Relocations
	typedef arelent
	enum complain_overflow
	reloc_howto_type
	The HOWTO Macro
	bfd_get_reloc_size
	arelent_chain
	bfd_check_overflow
	bfd_perform_relocation
	bfd_install_relocation

	The howto manager
	bfd_reloc_code_type
	bfd_reloc_type_lookup
	bfd_default_reloc_type_lookup
	bfd_get_reloc_code_name
	bfd_generic_relax_section
	bfd_generic_gc_sections
	bfd_generic_lookup_section_flags
	bfd_generic_merge_sections
	bfd_generic_get_relocated_section_contents

	Core files
	Core file functions
	bfd_core_file_failing_command
	bfd_core_file_failing_signal
	bfd_core_file_pid
	core_file_matches_executable_p
	generic_core_file_matches_executable_p

	Targets
	bfd_target
	bfd_set_default_target
	bfd_find_target
	bfd_get_target_info
	bfd_target_list
	bfd_seach_for_target

	Architectures
	bfd_architecture
	bfd_arch_info
	bfd_printable_name
	bfd_scan_arch
	bfd_arch_list
	bfd_arch_get_compatible
	bfd_default_arch_struct
	bfd_set_arch_info
	bfd_default_set_arch_mach
	bfd_get_arch
	bfd_get_mach
	bfd_arch_bits_per_byte
	bfd_arch_bits_per_address
	bfd_default_compatible
	bfd_default_scan
	bfd_get_arch_info
	bfd_lookup_arch
	bfd_printable_arch_mach
	bfd_octets_per_byte
	bfd_arch_mach_octets_per_byte
	bfd_arch_default_fill

	Opening and closing BFDs
	Functions for opening and closing
	bfd_fopen
	bfd_openr
	bfd_fdopenr
	bfd_openstreamr
	bfd_openr_iovec
	bfd_openw
	bfd_close
	bfd_close_all_done
	bfd_create
	bfd_make_writable
	bfd_make_readable
	bfd_alloc
	bfd_alloc2
	bfd_zalloc
	bfd_zalloc2
	bfd_calc_gnu_debuglink_crc32
	bfd_get_debug_link_info
	bfd_get_alt_debug_link_info
	separate_debug_file_exists
	separate_alt_debug_file_exists
	find_separate_debug_file
	bfd_follow_gnu_debuglink
	bfd_follow_gnu_debugaltlink
	bfd_create_gnu_debuglink_section
	bfd_fill_in_gnu_debuglink_section

	Implementation details
	Internal functions
	bfd_write_bigendian_4byte_int
	bfd_put_size
	bfd_get_size
	bfd_h_put_size
	bfd_log2

	File caching
	Caching functions
	bfd_cache_init
	bfd_cache_close
	bfd_cache_close_all
	bfd_open_file

	Linker Functions
	Creating a linker hash table
	Adding symbols to the hash table
	Differing file formats
	Adding symbols from an object file
	Adding symbols from an archive

	Performing the final link
	Information provided by the linker
	Relocating the section contents
	Writing the symbol table
	bfd_link_split_section
	bfd_section_already_linked
	bfd_generic_define_common_symbol
	bfd_find_version_for_sym
	bfd_hide_sym_by_version

	Hash Tables
	Creating and freeing a hash table
	Looking up or entering a string
	Traversing a hash table
	Deriving a new hash table type
	Define the derived structures
	Write the derived creation routine
	Write other derived routines

	BFD back ends
	What to Put Where
	a.out backends
	Relocations
	Internal entry points
	aout_size_swap_exec_header_in
	aout_size_swap_exec_header_out
	aout_size_some_aout_object_p
	aout_size_mkobject
	aout_size_machine_type
	aout_size_set_arch_mach
	aout_size_new_section_hook

	coff backends
	Porting to a new version of coff
	How the coff backend works
	File layout
	Coff long section names
	Bit twiddling
	Symbol reading
	Symbol writing
	coff_symbol_type
	bfd_coff_backend_data
	Writing relocations
	Reading linenumbers
	Reading relocations

	ELF backends
	mmo backend
	File layout
	Symbol table format
	mmo section mapping

	BFD Index

