Lzlib

Compression library for the lzip format
for Lzlib version 1.8, 17 May 2016

by Antonio Diaz Diaz

Table of Contents

... 1
1 Introduction................. 2
2 Library version 4
3 Buffering.......... 5
4 Parameter limits................................. 6
5 Compression functions.......................... 7
6 Decompression functions 10
7 Errorcodes............... 13
8 Error messages..................iiiiiiiii 14
9 Dataformat........................ 15
10 A small tutorial with examples.............. 17

11 Reporting bugs...................... ... 20

This manual is for Lzlib (version 1.8, 17 May 2016).

Copyright (©) 2009-2016 Antonio Diaz Diaz.

This manual is free documentation: you have unlimited permission to copy, distribute
and modify it.

1 Introduction

Lzlib is a data compression library providing in-memory LZMA compression and decom-
pression functions, including integrity checking of the decompressed data. The compressed
data format used by the library is the lzip format. Lzlib is written in C.

The lzip file format is designed for data sharing and long-term archiving, taking into
account both data integrity and decoder availability:

e The Izip format provides very safe integrity checking and some data recovery means.
The lziprecover program can repair bit-flip errors (one of the most common forms of
data corruption) in lzip files, and provides data recovery capabilities, including error-
checked merging of damaged copies of a file. See Section “Data safety” in 1ziprecover.

e The lzip format is as simple as possible (but not simpler). The lzip manual provides the
code of a simple decompressor along with a detailed explanation of how it works, so that
with the only help of the lzip manual it would be possible for a digital archaeologist
to extract the data from a lzip file long after quantum computers eventually render
LZMA obsolete.

e Additionally the lzip reference implementation is copylefted, which guarantees that it
will remain free forever.

A nice feature of the lzip format is that a corrupt byte is easier to repair the nearer it
is from the beginning of the file. Therefore, with the help of lziprecover, losing an entire
archive just because of a corrupt byte near the beginning is a thing of the past.

The functions and variables forming the interface of the compression library are declared
in the file ‘1z1ib.h’. Usage examples of the library are given in the files ‘main.c’ and
‘bbexample.c’ from the source distribution.

Compression/decompression is done by repeatedly calling a couple of read/write func-
tions until all the data have been processed by the library. This interface is safer and less
error prone than the traditional zlib interface.

Compression/decompression is done when the read function is called. This means the
value returned by the position functions will not be updated until a read call, even if a lot
of data is written. If you want the data to be compressed in advance, just call the read
function with a size equal to 0.

If all the data to be compressed are written in advance, 1zlib will automatically adjust
the header of the compressed data to use the smallest possible dictionary size. This feature
reduces the amount of memory needed for decompression and allows minilzip to produce
identical compressed output as lzip.

Lzlib will correctly decompress a data stream which is the concatenation of two or more
compressed data streams. The result is the concatenation of the corresponding decom-
pressed data streams. Integrity testing of concatenated compressed data streams is also
supported.

All the library functions are thread safe. The library does not install any signal handler.
The decoder checks the consistency of the compressed data, so the library should never
crash even in case of corrupted input.

In spite of its name (Lempel-Ziv-Markov chain-Algorithm), LZMA is not a concrete
algorithm; it is more like "any algorithm using the LZMA coding scheme". For example,

http://www.nongnu.org/lzip/manual/lziprecover_manual.html#Data-safety

the option ‘=0’ of lzip uses the scheme in almost the simplest way possible; issuing the
longest match it can find, or a literal byte if it can’t find a match. Inversely, a much more
elaborated way of finding coding sequences of minimum size than the one currently used by
Izip could be developed, and the resulting sequence could also be coded using the LZMA
coding scheme.

Lzlib currently implements two variants of the LZMA algorithm; fast (used by option
‘-0’ of minilzip) and normal (used by all other compression levels).

The high compression of LZMA comes from combining two basic, well-proven compres-
sion ideas: sliding dictionaries (LZ77/78) and markov models (the thing used by every
compression algorithm that uses a range encoder or similar order-0 entropy coder as its last
stage) with segregation of contexts according to what the bits are used for.

The ideas embodied in 1zlib are due to (at least) the following people: Abraham Lempel
and Jacob Ziv (for the LZ algorithm), Andrey Markov (for the definition of Markov chains),
G.N.N. Martin (for the definition of range encoding), Igor Pavlov (for putting all the above
together in LZMA), and Julian Seward (for bzip2’s CLI).

2 Library version

const char * LZ_version (void) [Function]
Returns the library version as a string.

const char * LZ_version_string [Constant]
This constant is defined in the header file ‘1z1ib.h’.

The application should compare LZ_version and LZ_version_string for consistency. If
the first character differs, the library code actually used may be incompatible with the
‘1zlib.h’ header file used by the application.

if (LZ_version() [0] != LZ_version_stringl[0])
error("bad library version");

3 Buffering

Lzlib internal functions need access to a memory chunk at least as large as the dictionary
size (sliding window). For efficiency reasons, the input buffer for compression is twice or
sixteen times as large as the dictionary size.

Finally, for safety reasons, lzlib uses two more internal buffers.
These are the four buffers used by lzlib, and their guaranteed minimum sizes:

e Input compression buffer. Written to by the ‘LZ_compress_write’ function. For
the normal variant of LZMA, its size is two times the dictionary size set with the
‘LZ_compress_open’ function or 64 KiB, whichever is larger. For the fast variant, its
size is 1 MiB.

e Output compression buffer. Read from by the ‘LZ_compress_read’ function. Its size
is 64 KiB.

e Input decompression buffer. Written to by the ‘LZ_decompress_write’ function. Its
size is 64 KiB.

e Output decompression buffer. Read from by the ‘LZ_decompress_read’ function. Its
size is the dictionary size set in the header of the member currently being decompressed
or 64 KiB, whichever is larger.

4 Parameter limits

These functions provide minimum and maximum values for some parameters.

values are shown in square brackets.

int

int

int

int

int

int

LZ_min_dictionary_bits (void)
Returns the base 2 logarithm of the smallest valid dictionary size [12].

LZ_min_dictionary_size (void)
Returns the smallest valid dictionary size [4 KiB|.

LZ_max_dictionary_bits (void)
Returns the base 2 logarithm of the largest valid dictionary size [29].

LZ_max_dictionary_size (void)
Returns the largest valid dictionary size [512 MiB].

LZ_min_match_len_limit (void)
Returns the smallest valid match length limit [5].

LZ_max_match_len_limit (void)
Returns the largest valid match length limit [273].

Current

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

5 Compression functions

These are the functions used to compress data. In case of error, all of them return -1 or
0, for signed and unsigned return values respectively, except ‘LZ_compress_open’ whose
return value must be verified by calling ‘LZ_compress_errno’ before using it.

struct LZ_Encoder * LZ_compress_open (const int [Function]
dictionary_size, const int match_len_limit, const unsigned long long
member_size)
Initializes the internal stream state for compression and returns a pointer that can
only be used as the encoder argument for the other LZ_compress functions, or a null
pointer if the encoder could not be allocated.

The returned pointer must be verified by calling ‘LZ_compress_errno’ before using
it. If ‘LZ_compress_errno’ does not return ‘LZ_ok’, the returned pointer must not
be used and should be freed with ‘LZ_compress_close’ to avoid memory leaks.

dictionary_size sets the dictionary size to be used, in bytes. Valid values range from
4 KiB to 512 MiB. Note that dictionary sizes are quantized. If the specified size
does not match one of the valid sizes, it will be rounded upwards by adding up to
(dictionary_size / 8) to it.

match_len_limit sets the match length limit in bytes. Valid values range from 5 to 273.
Larger values usually give better compression ratios but longer compression times.

If dictionary_size is 65535 and match_len_limit is 16, the fast variant of LZMA is
chosen, which produces identical compressed output as 1zip -0. (The dictionary size
used will be rounded upwards to 64 KiB).

member_size sets the member size limit in bytes. Minimum member size limit is 100
kB. Small member size may degrade compression ratio, so use it only when needed.
To produce a single-member data stream, give member_size a value larger than the
amount of data to be produced, for example INT64_MAX.

int LZ_compress_close (struct LZ_Encoder * const encoder) [Function]
Frees all dynamically allocated data structures for this stream. This function
discards any unprocessed input and does not flush any pending output. After a
call to ‘LZ_compress_close’, encoder can no more be used as an argument to any
LZ_compress function.

int LZ_compress_finish (struct LZ_Encoder * const encoder) [Function]
Use this function to tell ‘1z1ib’ that all the data for this member have already been
written (with the ‘LZ_compress_write’ function). After all the produced compressed
data have been read with ‘LZ_compress_read’ and ‘LZ_compress_member_finished’
returns 1, a new member can be started with ‘LZ_compress_restart_member’.

int LZ_compress_restart_member (struct LZ_Encoder * const [Function]
encoder, const unsigned long long member_size)
Use this function to start a new member in a multimember data stream. Call this
function only after ‘LZ_compress_member_finished’ indicates that the current mem-
ber has been fully read (with the ‘LZ_compress_read’ function).

Chapter 5: Compression functions 8

int LZ_compress_sync_flush (struct LZ_Encoder * const encoder [Function]
)
Use this function to make available to ‘LZ_compress_read’ all the data already writ-
ten with the ‘LZ_compress_write’ function. First call ‘LZ_compress_sync_flush’.
Then call ‘LZ_compress_read’ until it returns 0.

Repeated use of ‘LZ_compress_sync_flush’ may degrade compression ratio, so use
it only when needed.

int LZ_compress_read (struct LZ_Encoder * const encoder, [Function]
uint8_t * const buffer, const int size)
The ‘LZ_compress_read’ function reads up to size bytes from the stream pointed to
by encoder, storing the results in buffer.

The return value is the number of bytes actually read. This might be less than size;
for example, if there aren’t that many bytes left in the stream or if more bytes have to
be yet written with the ‘LZ_compress_write’ function. Note that reading less than
size bytes is not an error.

int LZ_compress_write (struct LZ_Encoder * const encoder, [Function]
uint8_t * const buffer, const int size)
The ‘LZ_compress_write’ function writes up to size bytes from buffer to the stream
pointed to by encoder.

The return value is the number of bytes actually written. This might be less than
size. Note that writing less than size bytes is not an error.

int LZ_compress_write_size (struct LZ_Encoder * const encoder [Function]
)
The ‘LZ_compress_write_size’ function returns the maximum number of bytes that
can be immediately written through the ‘LZ_compress_write’ function.

It is guaranteed that an immediate call to ‘LZ_compress_write’ will accept a size up
to the returned number of bytes.

enum LZ_Errno LZ_compress_errno (struct LZ_Encoder * const [Function]
encoder)
Returns the current error code for encoder (see Chapter 7 [Error codes|, page 13).

int LZ_compress_finished (struct LZ_Encoder * const encoder) [Function]
Returns 1 if all the data have been read and ‘LZ_compress_close’ can be safely
called. Otherwise it returns 0.

int LZ_compress_member_finished (struct LZ_Encoder * const [Function]
encoder)
Returns 1 if the current member, in a multimember data stream, has been fully read
and ‘LZ_compress_restart_member’ can be safely called. Otherwise it returns 0.

unsigned long long LZ_compress_data_position (struct [Function]
LZ_Encoder * const encoder)
Returns the number of input bytes already compressed in the current member.

unsigned long long LZ_compress_member_position (struct [Function]
LZ_Encoder * const encoder)
Returns the number of compressed bytes already produced, but perhaps not yet read,
in the current member.

unsigned long long LZ_compress_total_in_size (struct [Function]
LZ_Encoder * const encoder)
Returns the total number of input bytes already compressed.

unsigned long long LZ_compress_total_out_size (struct [Function]
LZ_Encoder * const encoder)
Returns the total number of compressed bytes already produced, but perhaps not yet
read.

10

6 Decompression functions

These are the functions used to decompress data. In case of error, all of them return -1 or
0, for signed and unsigned return values respectively, except ‘LZ_decompress_open’ whose
return value must be verified by calling ‘LZ_decompress_errno’ before using it.

struct LZ_Decoder * LZ_decompress_open (void) [Function]
Initializes the internal stream state for decompression and returns a pointer that can
only be used as the decoder argument for the other LZ_decompress functions, or a
null pointer if the decoder could not be allocated.

The returned pointer must be verified by calling ‘LZ_decompress_errno’ before using
it. If ‘LZ_decompress_errno’ does not return ‘LZ_ok’, the returned pointer must not
be used and should be freed with ‘LZ_decompress_close’ to avoid memory leaks.

int LZ_decompress_close (struct LZ_Decoder * const decoder) [Function]
Frees all dynamically allocated data structures for this stream. This function dis-
cards any unprocessed input and does not flush any pending output. After a call
to ‘LZ_decompress_close’, decoder can no more be used as an argument to any
LZ_decompress function.

int LZ_decompress_finish (struct LZ_Decoder * const decoder) [Function]
Use this function to tell ‘1z1ib’ that all the data for this stream have already been
written (with the ‘LZ_decompress_write’ function).

int LZ_decompress_reset (struct LZ_Decoder * const decoder) [Function]
Resets the internal state of decoder as it was just after opening it with the
‘LZ_decompress_open’ function. Data stored in the internal buffers is discarded.
Position counters are set to 0.

int LZ_decompress_sync_to_member (struct LZ_Decoder * const [Function]
decoder)
Resets the error state of decoder and enters a search state that lasts until a new
member header (or the end of the stream) is found. After a successful call to
‘LZ_decompress_sync_to_member’, data written with ‘LZ_decompress_write’ will
be consumed and ‘LZ_decompress_read’ will return 0 until a header is found.

This function is useful to discard any data preceding the first member, or to discard
the rest of the current member, for example in case of a data error. If the decoder is
already at the beginning of a member, this function does nothing.

int LZ_decompress_read (struct LZ_Decoder * const decoder, [Function]
uint8_t * const buffer, const int size)
The ‘LZ_decompress_read’ function reads up to size bytes from the stream pointed
to by decoder, storing the results in buffer.

The return value is the number of bytes actually read. This might be less than size;
for example, if there aren’t that many bytes left in the stream or if more bytes have
to be yet written with the ‘LZ_decompress_write’ function. Note that reading less
than size bytes is not an error.

Chapter 6: Decompression functions 11

int LZ_decompress_write (struct LZ_Decoder * const decoder, [Function]
uint8_t * const buffer, const int size)
The ‘LZ_decompress_write’ function writes up to size bytes from buffer to the stream
pointed to by decoder.

The return value is the number of bytes actually written. This might be less than
size. Note that writing less than size bytes is not an error.

int LZ_decompress_write_size (struct LZ_Decoder * const [Function]
decoder)
The ‘LZ_decompress_write_size’ function returns the maximum number of bytes
that can be immediately written through the ‘LZ_decompress_write’ function.

It is guaranteed that an immediate call to ‘LZ_decompress_write’ will accept a size
up to the returned number of bytes.

enum LZ_Errno LZ_decompress_errno (struct LZ_Decoder * const [Function]
decoder)
Returns the current error code for decoder (see Chapter 7 [Error codes|, page 13).

int LZ_decompress_finished (struct LZ_Decoder * const decoder [Function]
)
Returns 1 if all the data have been read and ‘LZ_decompress_close’ can be safely
called. Otherwise it returns 0.

int LZ_decompress_member_finished (struct LZ_Decoder * const [Function]
decoder)
Returns 1 if the previous call to ‘LZ_decompress_read’ finished reading
the current member, indicating that final values for member are available
through ‘LZ_decompress_data_crc’, ‘LZ_decompress_data_position’, and
‘LZ_decompress_member_position’. Otherwise it returns 0.

int LZ_decompress_member_version (struct LZ_Decoder * const [Function]
decoder)
Returns the version of current member from member header.

int LZ_decompress_dictionary_size (struct LZ_Decoder * const [Function]
decoder)
Returns the dictionary size of current member from member header.

unsigned LZ_decompress_data_crc (struct LZ_Decoder * const [Function]
decoder)

Returns the 32 bit Cyclic Redundancy Check of the data decompressed

from the current member. The returned value 1is wvalid only when

‘LZ_decompress_member_finished’ returns 1.

unsigned long long LZ_decompress_data_position (struct [Function]
LZ_Decoder * const decoder)
Returns the number of decompressed bytes already produced, but perhaps not yet
read, in the current member.

12

unsigned long long LZ_decompress_member_position (struct [Function]
LZ_Decoder * const decoder)
Returns the number of input bytes already decompressed in the current member.

unsigned long long LZ_decompress_total_in_size (struct [Function]
LZ_Decoder * const decoder)
Returns the total number of input bytes already decompressed.

unsigned long long LZ_decompress_total_out_size (struct [Function]
LZ_Decoder * const decoder)
Returns the total number of decompressed bytes already produced, but perhaps not

yet read.

13

7 Error codes

Most library functions return -1 to indicate that they have failed. But this return value
only tells you that an error has occurred. To find out what kind of error it was, you need
to verify the error code by calling ‘LZ_(de) compress_errno’.

Library functions don’t change the value returned by ‘LZ_(de) compress_errno’ when
they succeed; thus, the value returned by ‘LZ_(de) compress_errno’ after a successful call
is not necessarily LZ_ok, and you should not use ‘LZ_(de) compress_errno’ to determine
whether a call failed. If the call failed, then you can examine ‘LZ_(de) compress_errno’.

The error codes are defined in the header file ‘1z1ib.h’.

enum LZ_Errno LZ_ok [Constant|
The value of this constant is 0 and is used to indicate that there is no error.

enum LZ_Errno LZ_bad_argument [Constant)|
At least one of the arguments passed to the library function was invalid.

enum LZ_Errno LZ_mem_error [Constant)]
No memory available. The system cannot allocate more virtual memory because its
capacity is full.

enum LZ_Errno LZ_sequence_error [Constant|
A library function was called in the wrong order. For example
‘LZ_compress_restart_member’ was called before ‘LZ_compress_member_finished’
indicates that the current member is finished.

enum LZ_Errno LZ_header_error [Constant|
An invalid member header (one with the wrong magic bytes) was read. If this happens
at the end of the data stream it may indicate trailing data.

enum LZ_Errno LZ_unexpected_eof [Constant)|
The end of the data stream was reached in the middle of a member.

enum LZ_Errno LZ_data_error [Constant)]
The data stream is corrupt.

enum LZ_Errno LZ_library_error [Constant|
A bug was detected in the library. Please, report it (see Chapter 11 [Problems],
page 20).

14

8 Error messages

const char * LZ_strerror (const enum LZ_Errno lz_errno) [Function]
Returns the standard error message for a given error code. The messages are fairly
short; there are no multi-line messages or embedded newlines. This function makes
it easy for your program to report informative error messages about the failure of a
library call.

The value of Iz_errno normally comes from a call to ‘LZ_(de) compress_errno’.

15

9 Data format

Perfection is reached, not when there is no longer anything to add, but when there is no
longer anything to take away.
— Antoine de Saint-Exupery

In the diagram below, a box like this:
+———+
| | <-- the vertical bars might be missing
+-——+

represents one byte; a box like this:

+ +

+ =+

represents a variable number of bytes.

A 1zip data stream consists of a series of "members" (compressed data sets). The mem-
bers simply appear one after another in the data stream, with no additional information
before, between, or after them.

Each member has the following structure:

e e L T B e e e S mar e
| ID string | VN | DS | LZMA stream | CRC32 | Data size | Member size |
e =t—+

All multibyte values are stored in little endian order.

‘ID string (the "magic" bytes)’
A four byte string, identifying the lzip format, with the value "LZIP" (0x4C,
0x5A, 0x49, 0x50).

‘VN (version number, 1 byte)’
Just in case something needs to be modified in the future. 1 for now.

‘DS (coded dictionary size, 1 byte)’
The dictionary size is calculated by taking a power of 2 (the base size) and
substracting from it a fraction between 0/16 and 7/16 of the base size.
Bits 4-0 contain the base 2 logarithm of the base size (12 to 29).
Bits 7-5 contain the numerator of the fraction (0 to 7) to substract from the
base size to obtain the dictionary size.
Example: 0xD3 = 2719 -6 * 2715 = 512 KiB - 6 * 32 KiB = 320 KiB
Valid values for dictionary size range from 4 KiB to 512 MiB.

‘LZMA stream’
The LZMA stream, finished by an end of stream marker. Uses default values
for encoder properties. See Section “Stream format” in 1zip, for a complete
description.
Lzip only uses the LZMA marker ‘2’ ("End Of Stream" marker). Lzlib also
uses the LZMA marker ‘3’ ("Sync Flush" marker).

16

‘CRC32 (4 bytes)’
CRC of the uncompressed original data.

‘Data size (8 bytes)’
Size of the uncompressed original data.

‘Member size (8 bytes)’
Total size of the member, including header and trailer. This field acts as a
distributed index, allows the verification of stream integrity, and facilitates safe
recovery of undamaged members from multimember files.

10 A small tutorial with examples

This chapter shows the order in which the library functions should be called depending on
what kind of data stream you want to compress or decompress. See the file ‘bbexample.c’in
the source distribution for an example of how buffer-to-buffer compression/decompression

can be implemented using lzlib.

Note that 1zlib’s interface is symmetrical. That is, the code for normal compression and
decompression is identical except because one calls LZ_compress* functions while the other

calls LZ_decompress* functions.

Example 1: Normal compression (member_size > total output).

1)
2)
3)
4)
5)
6)
7)
8)

LZ_compress_open

LZ_compress_write

LZ_compress_read

go back to step 2 until all input data have been written
LZ_compress_finish

LZ_compress_read

go back to step 6 until LZ_compress_finished returns 1
LZ_compress_close

Example 2: Normal compression using LZ_compress_write_size.

1)
2)
3)
4)
5)
6)
7)

LZ_compress_open

go to step 5 if LZ_compress_write_size returns 0O
LZ_compress_write

if no more data to write, call LZ_compress_finish
LZ_compress_read

go back to step 2 until LZ_compress_finished returns 1
LZ_compress_close

Example 3: Decompression.

1)
2)
3)
4)
5)
6)
7)
8)

LZ_decompress_open

LZ_decompress_write

LZ_decompress_read

go back to step 2 until all input data have been written
LZ_decompress_finish

LZ_decompress_read

go back to step 6 until LZ_decompress_finished returns 1
LZ_decompress_close

Example 4: Decompression using L.Z_decompress_write_size.

1)
2)
3)
4)
5)

LZ_decompress_open

go to step 5 if LZ_decompress_write_size returns O
LZ_decompress_write

if no more data to write, call LZ_decompress_finish
LZ_decompress_read

Chapter 10: A small tutorial with examples 18

5a) optionally, if LZ_decompress_member_finished returns 1, read
final values for member with LZ_decompress_data_crc, etc.

6) go back to step 2 until LZ_decompress_finished returns 1

7) LZ_decompress_close

Example 5: Multimember compression (member_size < total output).

1) LZ_compress_open

2) go to step 5 if LZ_compress_write_size returns 0

3) LZ_compress_write

4) if no more data to write, call LZ_compress_finish

5) LZ_compress_read

6) go back to step 2 until LZ_compress_member_finished returns 1
7) go to step 10 if LZ_compress_finished() returns 1

8) LZ_compress_restart_member

9) go back to step 2

10) LZ_compress_close

Example 6: Multimember compression (user-restarted members).

1) LZ_compress_open

2) LZ_compress_write

3) LZ_compress_read

4) go back to step 2 until member termination is desired
5) LZ_compress_finish

6) LZ_compress_read

7) go back to step 6 until LZ_compress_member_finished returns 1
8) verify that LZ_compress_finished returns 1

9) go to step 12 if all input data have been written

10) LZ_compress_restart_member

11) go back to step 2

12) LZ_compress_close

Example 7: Decompression with automatic removal of leading data.

1) LZ_decompress_open

2) LZ_decompress_sync_to_member

3) go to step 6 if LZ_decompress_write_size returns 0

4) LZ_decompress_write

5) if no more data to write, call LZ_decompress_finish

6) LZ_decompress_read

7) go back to step 3 until LZ_decompress_finished returns 1
8) LZ_decompress_close

Example 8: Streamed decompression with automatic resynchronization to next member in
case of data error.

1) LZ_decompress_open

2) go to step 5 if LZ_decompress_write_size returns O

3)
4)
5)

6)
7)

LZ_decompress_write

if no more data to write, call LZ_decompress_finish

if LZ_decompress_read produces LZ_header_error or LZ_data_error,
call LZ_decompress_sync_to_member

go back to step 2 until LZ_decompress_finished returns 1
LZ_decompress_close

19

20

11 Reporting bugs

There are probably bugs in Izlib. There are certainly errors and omissions in this manual.
If you report them, they will get fixed. If you don’t, no one will ever know about them and
they will remain unfixed for all eternity, if not longer.

If you find a bug in lzlib, please send electronic mail to lzip-bug@nongnu.org.
Include the version number, which you can find by running minilzip --version or in

‘LZ_version_string’ from ‘1zlib.h’.

mailto:lzip-bug@nongnu.org

B

buffering........ ... 5
UGS . o oot 20

C

compression functions........................... 7

D

data format........... i 15
decompression functions........................ 10

E

EITOT COAES. .\ttt ittt et 13
EITOT MESSAZES « + v v v v vt e eeeeeee e aaeeeenns 14
examples 17

G

getting help.....

I

introduction

L

library version ..

P

parameter limits

21

	
	Introduction
	Library version
	Buffering
	Parameter limits
	Compression functions
	Decompression functions
	Error codes
	Error messages
	Data format
	A small tutorial with examples
	Reporting bugs

