
GNU Readline Library User Interface
Edition 4.3, for Readline Library Version 4.3.

March 2002

Brian Fox, Free Software Foundation
Chet Ramey, Case Western Reserve University

This document describes the end user interface of the GNU Readline Library, a utility
which aids in the consistency of user interface across discrete programs that need to provide
a command line interface.
Published by the Free Software Foundation
59 Temple Place, Suite 330,
Boston, MA 02111 USA
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Copyright c© 1988-2002 Free Software Foundation, Inc.

Chapter 1: Command Line Editing 1

1 Command Line Editing

This chapter describes the basic features of the gnu command line editing interface.

1.1 Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes.
The text C-k is read as ‘Control-K’ and describes the character produced when the 〈k〉

key is pressed while the Control key is depressed.
The text M-k is read as ‘Meta-K’ and describes the character produced when the Meta

key (if you have one) is depressed, and the 〈k〉 key is pressed. The Meta key is labeled 〈ALT〉
on many keyboards. On keyboards with two keys labeled 〈ALT〉 (usually to either side of the
space bar), the 〈ALT〉 on the left side is generally set to work as a Meta key. The 〈ALT〉 key
on the right may also be configured to work as a Meta key or may be configured as some
other modifier, such as a Compose key for typing accented characters.

If you do not have a Meta or 〈ALT〉 key, or another key working as a Meta key, the identical
keystroke can be generated by typing 〈ESC〉 first, and then typing 〈k〉. Either process is known
as metafying the 〈k〉 key.

The text M-C-k is read as ‘Meta-Control-k’ and describes the character produced by
metafying C-k.

In addition, several keys have their own names. Specifically, 〈DEL〉, 〈ESC〉, 〈LFD〉, 〈SPC〉,
〈RET〉, and 〈TAB〉 all stand for themselves when seen in this text, or in an init file (see
Section 1.3 [Readline Init File], page 4). If your keyboard lacks a 〈LFD〉 key, typing 〈C-j〉
will produce the desired character. The 〈RET〉 key may be labeled 〈Return〉 or 〈Enter〉 on some
keyboards.

1.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the
first word on the line is misspelled. The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections. Then,
when you are satisfied with the line, you simply press 〈RET〉. You do not have to be at the
end of the line to press 〈RET〉; the entire line is accepted regardless of the location of the
cursor within the line.

1.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears
where the cursor was, and then the cursor moves one space to the right. If you mistype a
character, you can use your erase character to back up and delete the mistyped character.

Sometimes you may mistype a character, and not notice the error until you have typed
several other characters. In that case, you can type C-b to move the cursor to the left, and
then correct your mistake. Afterwards, you can move the cursor to the right with C-f.

2 GNU Readline Library

When you add text in the middle of a line, you will notice that characters to the right
of the cursor are ‘pushed over’ to make room for the text that you have inserted. Likewise,
when you delete text behind the cursor, characters to the right of the cursor are ‘pulled
back’ to fill in the blank space created by the removal of the text. A list of the bare essentials
for editing the text of an input line follows.

C-b Move back one character.

C-f Move forward one character.

〈DEL〉 or 〈Backspace〉
Delete the character to the left of the cursor.

C-d Delete the character underneath the cursor.

Printing characters
Insert the character into the line at the cursor.

C-_ or C-x C-u

Undo the last editing command. You can undo all the way back to an empty
line.

(Depending on your configuration, the 〈Backspace〉 key be set to delete the character to the
left of the cursor and the 〈DEL〉 key set to delete the character underneath the cursor, like
C-d, rather than the character to the left of the cursor.)

1.2.2 Readline Movement Commands

The above table describes the most basic keystrokes that you need in order to do editing
of the input line. For your convenience, many other commands have been added in addition
to C-b, C-f, C-d, and 〈DEL〉. Here are some commands for moving more rapidly about the
line.

C-a Move to the start of the line.

C-e Move to the end of the line.

M-f Move forward a word, where a word is composed of letters and digits.

M-b Move backward a word.

C-l Clear the screen, reprinting the current line at the top.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

1.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking (re-inserting) it back into the line. (‘Cut’ and ‘paste’ are more recent
jargon for ‘kill’ and ‘yank’.)

If the description for a command says that it ‘kills’ text, then you can be sure that you
can get the text back in a different (or the same) place later.

Chapter 1: Command Line Editing 3

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it all. The
kill ring is not line specific; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or, if between words, to the
end of the next word. Word boundaries are the same as those used by M-f.

M-〈DEL〉 Kill from the cursor the start of the current word, or, if between words, to the
start of the previous word. Word boundaries are the same as those used by
M-b.

C-w Kill from the cursor to the previous whitespace. This is different than M-〈DEL〉
because the word boundaries differ.

Here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

1.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts
as a repeat count, other times it is the sign of the argument that is significant. If you
pass a negative argument to a command which normally acts in a forward direction, that
command will act in a backward direction. For example, to kill text back to the start of
the line, you might type ‘M-- C-k’.

The general way to pass numeric arguments to a command is to type meta digits before
the command. If the first ‘digit’ typed is a minus sign (‘-’), then the sign of the argument
will be negative. Once you have typed one meta digit to get the argument started, you
can type the remainder of the digits, and then the command. For example, to give the C-d

command an argument of 10, you could type ‘M-1 0 C-d’, which will delete the next ten
characters on the input line.

1.2.5 Searching for Commands in the History

Readline provides commands for searching through the command history for lines con-
taining a specified string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each
character of the search string is typed, Readline displays the next entry from the history
matching the string typed so far. An incremental search requires only as many characters as
needed to find the desired history entry. To search backward in the history for a particular
string, type C-r. Typing C-s searches forward through the history. The characters present
in the value of the isearch-terminators variable are used to terminate an incremental

4 GNU Readline Library

search. If that variable has not been assigned a value, the 〈ESC〉 and C-J characters will
terminate an incremental search. C-g will abort an incremental search and restore the
original line. When the search is terminated, the history entry containing the search string
becomes the current line.

To find other matching entries in the history list, type C-r or C-s as appropriate. This
will search backward or forward in the history for the next entry matching the search string
typed so far. Any other key sequence bound to a Readline command will terminate the
search and execute that command. For instance, a 〈RET〉 will terminate the search and accept
the line, thereby executing the command from the history list. A movement command will
terminate the search, make the last line found the current line, and begin editing.

Readline remembers the last incremental search string. If two C-rs are typed without
any intervening characters defining a new search string, any remembered search string is
used.

Non-incremental searches read the entire search string before starting to search for
matching history lines. The search string may be typed by the user or be part of the
contents of the current line.

1.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings installed
by default, it is possible to use a different set of keybindings. Any user can customize
programs that use Readline by putting commands in an inputrc file, conventionally in his
home directory. The name of this file is taken from the value of the environment variable
INPUTRC. If that variable is unset, the default is ‘~/.inputrc’.

When a program which uses the Readline library starts up, the init file is read, and the
key bindings are set.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes
that you might have made to it.

1.3.1 Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init file. Blank lines are
ignored. Lines beginning with a ‘#’ are comments. Lines beginning with a ‘$’ indicate
conditional constructs (see Section 1.3.2 [Conditional Init Constructs], page 9). Other lines
denote variable settings and key bindings.

Variable Settings
You can modify the run-time behavior of Readline by altering the values of
variables in Readline using the set command within the init file. The syntax
is simple:

set variable value

Here, for example, is how to change from the default Emacs-like key binding to
use vi line editing commands:

set editing-mode vi

Chapter 1: Command Line Editing 5

Variable names and values, where appropriate, are recognized without regard
to case.
A great deal of run-time behavior is changeable with the following variables.

bell-style
Controls what happens when Readline wants to ring the termi-
nal bell. If set to ‘none’, Readline never rings the bell. If set to
‘visible’, Readline uses a visible bell if one is available. If set to
‘audible’ (the default), Readline attempts to ring the terminal’s
bell.

comment-begin
The string to insert at the beginning of the line when the insert-
comment command is executed. The default value is "#".

completion-ignore-case
If set to ‘on’, Readline performs filename matching and completion
in a case-insensitive fashion. The default value is ‘off’.

completion-query-items
The number of possible completions that determines when the user
is asked whether he wants to see the list of possibilities. If the
number of possible completions is greater than this value, Readline
will ask the user whether or not he wishes to view them; otherwise,
they are simply listed. This variable must be set to an integer value
greater than or equal to 0. The default limit is 100.

convert-meta
If set to ‘on’, Readline will convert characters with the eighth bit set
to an ascii key sequence by stripping the eighth bit and prefixing an
〈ESC〉 character, converting them to a meta-prefixed key sequence.
The default value is ‘on’.

disable-completion
If set to ‘On’, Readline will inhibit word completion. Completion
characters will be inserted into the line as if they had been mapped
to self-insert. The default is ‘off’.

editing-mode
The editing-mode variable controls which default set of key bind-
ings is used. By default, Readline starts up in Emacs editing mode,
where the keystrokes are most similar to Emacs. This variable can
be set to either ‘emacs’ or ‘vi’.

enable-keypad
When set to ‘on’, Readline will try to enable the application keypad
when it is called. Some systems need this to enable the arrow keys.
The default is ‘off’.

expand-tilde
If set to ‘on’, tilde expansion is performed when Readline attempts
word completion. The default is ‘off’.

6 GNU Readline Library

If set to ‘on’, the history code attempts to place point at the same
location on each history line retrived with previous-history or
next-history.

horizontal-scroll-mode
This variable can be set to either ‘on’ or ‘off’. Setting it to ‘on’
means that the text of the lines being edited will scroll horizontally
on a single screen line when they are longer than the width of the
screen, instead of wrapping onto a new screen line. By default, this
variable is set to ‘off’.

input-meta
If set to ‘on’, Readline will enable eight-bit input (it will not clear
the eighth bit in the characters it reads), regardless of what the
terminal claims it can support. The default value is ‘off’. The
name meta-flag is a synonym for this variable.

isearch-terminators
The string of characters that should terminate an incremental
search without subsequently executing the character as a command
(see Section 1.2.5 [Searching], page 3). If this variable has not
been given a value, the characters 〈ESC〉 and C-J will terminate an
incremental search.

keymap Sets Readline’s idea of the current keymap for key binding com-
mands. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command; emacs is equivalent
to emacs-standard. The default value is emacs. The value of the
editing-mode variable also affects the default keymap.

mark-directories
If set to ‘on’, completed directory names have a slash appended.
The default is ‘on’.

mark-modified-lines
This variable, when set to ‘on’, causes Readline to display an as-
terisk (‘*’) at the start of history lines which have been modified.
This variable is ‘off’ by default.

mark-symlinked-directories
If set to ‘on’, completed names which are symbolic links to di-
rectories have a slash appended (subject to the value of mark-
directories). The default is ‘off’.

match-hidden-files
This variable, when set to ‘on’, causes Readline to match files whose
names begin with a ‘.’ (hidden files) when performing filename
completion, unless the leading ‘.’ is supplied by the user in the
filename to be completed. This variable is ‘on’ by default.

Chapter 1: Command Line Editing 7

output-meta
If set to ‘on’, Readline will display characters with the eighth bit
set directly rather than as a meta-prefixed escape sequence. The
default is ‘off’.

page-completions
If set to ‘on’, Readline uses an internal more-like pager to display
a screenful of possible completions at a time. This variable is ‘on’
by default.

print-completions-horizontally
If set to ‘on’, Readline will display completions with matches sorted
horizontally in alphabetical order, rather than down the screen.
The default is ‘off’.

show-all-if-ambiguous
This alters the default behavior of the completion functions. If set
to ‘on’, words which have more than one possible completion cause
the matches to be listed immediately instead of ringing the bell.
The default value is ‘off’.

visible-stats
If set to ‘on’, a character denoting a file’s type is appended to the
filename when listing possible completions. The default is ‘off’.

Key Bindings
The syntax for controlling key bindings in the init file is simple. First you
need to find the name of the command that you want to change. The following
sections contain tables of the command name, the default keybinding, if any,
and a short description of what the command does.
Once you know the name of the command, simply place on a line in the init
file the name of the key you wish to bind the command to, a colon, and then
the name of the command. The name of the key can be expressed in different
ways, depending on what you find most comfortable.
In addition to command names, readline allows keys to be bound to a string
that is inserted when the key is pressed (a macro).

keyname: function-name or macro
keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

In the above example, C-u is bound to the function universal-
argument, M-DEL is bound to the function backward-kill-word,
and C-o is bound to run the macro expressed on the right hand
side (that is, to insert the text ‘> output’ into the line).
A number of symbolic character names are recognized while pro-
cessing this key binding syntax: DEL, ESC, ESCAPE, LFD, NEW-
LINE, RET, RETURN, RUBOUT, SPACE, SPC, and TAB.

8 GNU Readline Library

"keyseq": function-name or macro
keyseq differs from keyname above in that strings denoting an en-
tire key sequence can be specified, by placing the key sequence in
double quotes. Some gnu Emacs style key escapes can be used, as
in the following example, but the special character names are not
recognized.

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11~": "Function Key 1"

In the above example, C-u is again bound to the function
universal-argument (just as it was in the first example), ‘C-x
C-r’ is bound to the function re-read-init-file, and ‘〈ESC〉 〈[〉
〈1〉 〈1〉 〈~〉’ is bound to insert the text ‘Function Key 1’.

The following gnu Emacs style escape sequences are available when specifying
key sequences:

\C- control prefix

\M- meta prefix

\e an escape character

\\ backslash

\" 〈"〉, a double quotation mark

\’ 〈’〉, a single quote or apostrophe

In addition to the gnu Emacs style escape sequences, a second set of backslash
escapes is available:

\a alert (bell)

\b backspace

\d delete

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\nnn the eight-bit character whose value is the octal value nnn (one to
three digits)

\xHH the eight-bit character whose value is the hexadecimal value HH
(one or two hex digits)

When entering the text of a macro, single or double quotes must be used to
indicate a macro definition. Unquoted text is assumed to be a function name. In
the macro body, the backslash escapes described above are expanded. Backslash
will quote any other character in the macro text, including ‘"’ and ‘’’. For
example, the following binding will make ‘C-x \’ insert a single ‘\’ into the line:

Chapter 1: Command Line Editing 9

"\C-x\\": "\\"

1.3.2 Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features
of the C preprocessor which allows key bindings and variable settings to be performed as
the result of tests. There are four parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using Readline. The text of the test
extends to the end of the line; no characters are required to isolate it.

mode The mode= form of the $if directive is used to test whether Readline
is in emacs or vi mode. This may be used in conjunction with the
‘set keymap’ command, for instance, to set bindings in the emacs-
standard and emacs-ctlx keymaps only if Readline is starting out
in emacs mode.

term The term= form may be used to include terminal-specific key bind-
ings, perhaps to bind the key sequences output by the terminal’s
function keys. The word on the right side of the ‘=’ is tested against
both the full name of the terminal and the portion of the terminal
name before the first ‘-’. This allows sun to match both sun and
sun-cmd, for instance.

application
The application construct is used to include application-specific set-
tings. Each program using the Readline library sets the application
name, and you can test for a particular value. This could be used to
bind key sequences to functions useful for a specific program. For
instance, the following command adds a key sequence that quotes
the current or previous word in Bash:

$if Bash
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
$endif

$endif This command, as seen in the previous example, terminates an $if command.

$else Commands in this branch of the $if directive are executed if the test fails.

$include This directive takes a single filename as an argument and reads commands
and bindings from that file. For example, the following directive reads from
‘/etc/inputrc’:

$include /etc/inputrc

1.3.3 Sample Init File

Here is an example of an inputrc file. This illustrates key binding, variable assignment,
and conditional syntax.

10 GNU Readline Library

Chapter 1: Command Line Editing 11

This file controls the behaviour of line input editing for
programs that use the GNU Readline library. Existing
programs include FTP, Bash, and GDB.
#
You can re-read the inputrc file with C-x C-r.
Lines beginning with ’#’ are comments.
#
First, include any systemwide bindings and variable
assignments from /etc/Inputrc
$include /etc/Inputrc

#
Set various bindings for emacs mode.

set editing-mode emacs

$if mode=emacs

Meta-Control-h: backward-kill-word Text after the function name is ignored

#
Arrow keys in keypad mode
#
#"\M-OD": backward-char
#"\M-OC": forward-char
#"\M-OA": previous-history
#"\M-OB": next-history
#
Arrow keys in ANSI mode
#
"\M-[D": backward-char
"\M-[C": forward-char
"\M-[A": previous-history
"\M-[B": next-history
#
Arrow keys in 8 bit keypad mode
#
#"\M-\C-OD": backward-char
#"\M-\C-OC": forward-char
#"\M-\C-OA": previous-history
#"\M-\C-OB": next-history
#
Arrow keys in 8 bit ANSI mode
#
#"\M-\C-[D": backward-char
#"\M-\C-[C": forward-char

12 GNU Readline Library

#"\M-\C-[A": previous-history
#"\M-\C-[B": next-history

C-q: quoted-insert

$endif

An old-style binding. This happens to be the default.
TAB: complete

Macros that are convenient for shell interaction
$if Bash
edit the path
"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
prepare to type a quoted word --
insert open and close double quotes
and move to just after the open quote
"\C-x\"": "\"\"\C-b"
insert a backslash (testing backslash escapes
in sequences and macros)
"\C-x\\": "\\"
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
Add a binding to refresh the line, which is unbound
"\C-xr": redraw-current-line
Edit variable on current line.
"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
$endif

use a visible bell if one is available
set bell-style visible

don’t strip characters to 7 bits when reading
set input-meta on

allow iso-latin1 characters to be inserted rather
than converted to prefix-meta sequences
set convert-meta off

display characters with the eighth bit set directly
rather than as meta-prefixed characters
set output-meta on

if there are more than 150 possible completions for
a word, ask the user if he wants to see all of them
set completion-query-items 150

Chapter 1: Command Line Editing 13

For FTP
$if Ftp
"\C-xg": "get \M-?"
"\C-xt": "put \M-?"
"\M-.": yank-last-arg
$endif

1.4 Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences. Com-
mand names without an accompanying key sequence are unbound by default.

In the following descriptions, point refers to the current cursor position, and mark refers
to a cursor position saved by the set-mark command. The text between the point and
mark is referred to as the region.

1.4.1 Commands For Moving

beginning-of-line (C-a)
Move to the start of the current line.

end-of-line (C-e)
Move to the end of the line.

forward-char (C-f)
Move forward a character.

backward-char (C-b)
Move back a character.

forward-word (M-f)
Move forward to the end of the next word. Words are composed of letters and
digits.

backward-word (M-b)
Move back to the start of the current or previous word. Words are composed
of letters and digits.

clear-screen (C-l)
Clear the screen and redraw the current line, leaving the current line at the top
of the screen.

redraw-current-line ()
Refresh the current line. By default, this is unbound.

1.4.2 Commands For Manipulating The History

accept-line (Newline or Return)
Accept the line regardless of where the cursor is. If this line is non-empty, it
may be added to the history list for future recall with add_history(). If this
line is a modified history line, the history line is restored to its original state.

14 GNU Readline Library

previous-history (C-p)
Move ‘back’ through the history list, fetching the previous command.

next-history (C-n)
Move ‘forward’ through the history list, fetching the next command.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line currently being entered.

reverse-search-history (C-r)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

forward-search-history (C-s)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary. This is an incremental search.

non-incremental-reverse-search-history (M-p)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary using a non-incremental search for a string supplied by the
user.

non-incremental-forward-search-history (M-n)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary using a non-incremental search for a string supplied by the
user.

history-search-forward ()
Search forward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

history-search-backward ()
Search backward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

yank-nth-arg (M-C-y)
Insert the first argument to the previous command (usually the second word on
the previous line) at point. With an argument n, insert the nth word from the
previous command (the words in the previous command begin with word 0). A
negative argument inserts the nth word from the end of the previous command.

yank-last-arg (M-. or M-_)
Insert last argument to the previous command (the last word of the previous
history entry). With an argument, behave exactly like yank-nth-arg. Succes-
sive calls to yank-last-arg move back through the history list, inserting the
last argument of each line in turn.

Chapter 1: Command Line Editing 15

1.4.3 Commands For Changing Text

delete-char (C-d)
Delete the character at point. If point is at the beginning of the line, there
are no characters in the line, and the last character typed was not bound to
delete-char, then return eof.

backward-delete-char (Rubout)
Delete the character behind the cursor. A numeric argument means to kill the
characters instead of deleting them.

forward-backward-delete-char ()
Delete the character under the cursor, unless the cursor is at the end of the
line, in which case the character behind the cursor is deleted. By default, this
is not bound to a key.

quoted-insert (C-q or C-v)
Add the next character typed to the line verbatim. This is how to insert key
sequences like C-q, for example.

tab-insert (M-〈TAB〉)
Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert yourself.

transpose-chars (C-t)
Drag the character before the cursor forward over the character at the cursor,
moving the cursor forward as well. If the insertion point is at the end of the
line, then this transposes the last two characters of the line. Negative arguments
have no effect.

transpose-words (M-t)
Drag the word before point past the word after point, moving point past that
word as well. If the insertion point is at the end of the line, this transposes the
last two words on the line.

upcase-word (M-u)
Uppercase the current (or following) word. With a negative argument, upper-
case the previous word, but do not move the cursor.

downcase-word (M-l)
Lowercase the current (or following) word. With a negative argument, lowercase
the previous word, but do not move the cursor.

capitalize-word (M-c)
Capitalize the current (or following) word. With a negative argument, capitalize
the previous word, but do not move the cursor.

overwrite-mode ()
Toggle overwrite mode. With an explicit positive numeric argument, switches
to overwrite mode. With an explicit non-positive numeric argument, switches to

16 GNU Readline Library

insert mode. This command affects only emacs mode; vi mode does overwrite
differently. Each call to readline() starts in insert mode.
In overwrite mode, characters bound to self-insert replace the text at point
rather than pushing the text to the right. Characters bound to backward-
delete-char replace the character before point with a space.
By default, this command is unbound.

1.4.4 Killing And Yanking

kill-line (C-k)
Kill the text from point to the end of the line.

backward-kill-line (C-x Rubout)
Kill backward to the beginning of the line.

unix-line-discard (C-u)
Kill backward from the cursor to the beginning of the current line.

kill-whole-line ()
Kill all characters on the current line, no matter where point is. By default,
this is unbound.

kill-word (M-d)
Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as forward-word.

backward-kill-word (M-〈DEL〉)
Kill the word behind point. Word boundaries are the same as backward-word.

unix-word-rubout (C-w)
Kill the word behind point, using white space as a word boundary. The killed
text is saved on the kill-ring.

delete-horizontal-space ()
Delete all spaces and tabs around point. By default, this is unbound.

kill-region ()
Kill the text in the current region. By default, this command is unbound.

copy-region-as-kill ()
Copy the text in the region to the kill buffer, so it can be yanked right away.
By default, this command is unbound.

copy-backward-word ()
Copy the word before point to the kill buffer. The word boundaries are the
same as backward-word. By default, this command is unbound.

copy-forward-word ()
Copy the word following point to the kill buffer. The word boundaries are the
same as forward-word. By default, this command is unbound.

yank (C-y)
Yank the top of the kill ring into the buffer at point.

Chapter 1: Command Line Editing 17

yank-pop (M-y)
Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

1.4.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)
Add this digit to the argument already accumulating, or start a new argument.
M-- starts a negative argument.

universal-argument ()
This is another way to specify an argument. If this command is followed by one
or more digits, optionally with a leading minus sign, those digits define the ar-
gument. If the command is followed by digits, executing universal-argument
again ends the numeric argument, but is otherwise ignored. As a special case,
if this command is immediately followed by a character that is neither a digit
or minus sign, the argument count for the next command is multiplied by four.
The argument count is initially one, so executing this function the first time
makes the argument count four, a second time makes the argument count six-
teen, and so on. By default, this is not bound to a key.

1.4.6 Letting Readline Type For You

complete (〈TAB〉)
Attempt to perform completion on the text before point. The actual completion
performed is application-specific. The default is filename completion.

possible-completions (M-?)
List the possible completions of the text before point.

insert-completions (M-*)
Insert all completions of the text before point that would have been generated
by possible-completions.

menu-complete ()
Similar to complete, but replaces the word to be completed with a single match
from the list of possible completions. Repeated execution of menu-complete
steps through the list of possible completions, inserting each match in turn.
At the end of the list of completions, the bell is rung (subject to the setting
of bell-style) and the original text is restored. An argument of n moves n
positions forward in the list of matches; a negative argument may be used to
move backward through the list. This command is intended to be bound to
〈TAB〉, but is unbound by default.

delete-char-or-list ()
Deletes the character under the cursor if not at the beginning or end of the line
(like delete-char). If at the end of the line, behaves identically to possible-
completions. This command is unbound by default.

18 GNU Readline Library

1.4.7 Keyboard Macros

start-kbd-macro (C-x ()
Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))
Stop saving the characters typed into the current keyboard macro and save the
definition.

call-last-kbd-macro (C-x e)
Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

1.4.8 Some Miscellaneous Commands

re-read-init-file (C-x C-r)
Read in the contents of the inputrc file, and incorporate any bindings or variable
assignments found there.

abort (C-g)
Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell-style).

do-uppercase-version (M-a, M-b, M-x, ...)
If the metafied character x is lowercase, run the command that is bound to the
corresponding uppercase character.

prefix-meta (〈ESC〉)
Metafy the next character typed. This is for keyboards without a meta key.
Typing ‘〈ESC〉 f’ is equivalent to typing M-f.

undo (C-_ or C-x C-u)
Incremental undo, separately remembered for each line.

revert-line (M-r)
Undo all changes made to this line. This is like executing the undo command
enough times to get back to the beginning.

tilde-expand (M-~)
Perform tilde expansion on the current word.

set-mark (C-@)
Set the mark to the point. If a numeric argument is supplied, the mark is set
to that position.

exchange-point-and-mark (C-x C-x)
Swap the point with the mark. The current cursor position is set to the saved
position, and the old cursor position is saved as the mark.

character-search (C-])
A character is read and point is moved to the next occurrence of that character.
A negative count searches for previous occurrences.

Chapter 1: Command Line Editing 19

character-search-backward (M-C-])
A character is read and point is moved to the previous occurrence of that
character. A negative count searches for subsequent occurrences.

insert-comment (M-#)
Without a numeric argument, the value of the comment-begin variable is in-
serted at the beginning of the current line. If a numeric argument is supplied,
this command acts as a toggle: if the characters at the beginning of the line
do not match the value of comment-begin, the value is inserted, otherwise the
characters in comment-begin are deleted from the beginning of the line. In
either case, the line is accepted as if a newline had been typed.

dump-functions ()
Print all of the functions and their key bindings to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-variables ()
Print all of the settable variables and their values to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-macros ()
Print all of the Readline key sequences bound to macros and the strings they
output. If a numeric argument is supplied, the output is formatted in such a
way that it can be made part of an inputrc file. This command is unbound by
default.

emacs-editing-mode (C-e)
When in vi command mode, this causes a switch to emacs editing mode.

vi-editing-mode (M-C-j)
When in emacs editing mode, this causes a switch to vi editing mode.

1.5 Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line. The Readline vi mode behaves as specified in
the posix 1003.2 standard.

In order to switch interactively between emacs and vi editing modes, use the command
M-C-j (bound to emacs-editing-mode when in vi mode and to vi-editing-mode in emacs
mode). The Readline default is emacs mode.

When you enter a line in vi mode, you are already placed in ‘insertion’ mode, as if you
had typed an ‘i’. Pressing 〈ESC〉 switches you into ‘command’ mode, where you can edit the
text of the line with the standard vi movement keys, move to previous history lines with
‘k’ and subsequent lines with ‘j’, and so forth.

20 GNU Readline Library

i

Table of Contents

1 Command Line Editing . 1
1.1 Introduction to Line Editing . 1
1.2 Readline Interaction . 1

1.2.1 Readline Bare Essentials . 1
1.2.2 Readline Movement Commands 2
1.2.3 Readline Killing Commands . 2
1.2.4 Readline Arguments . 3
1.2.5 Searching for Commands in the History 3

1.3 Readline Init File . 4
1.3.1 Readline Init File Syntax . 4
1.3.2 Conditional Init Constructs. 9
1.3.3 Sample Init File . 9

1.4 Bindable Readline Commands . 13
1.4.1 Commands For Moving . 13
1.4.2 Commands For Manipulating The History 13
1.4.3 Commands For Changing Text 14
1.4.4 Killing And Yanking . 16
1.4.5 Specifying Numeric Arguments 17
1.4.6 Letting Readline Type For You 17
1.4.7 Keyboard Macros . 17
1.4.8 Some Miscellaneous Commands 18

1.5 Readline vi Mode . 19

ii GNU Readline Library

