GAWK: Effective AWK Programming

A User’s Guide for GNU Awk
Edition 3
April, 2010

Arnold D. Robbins

“To boldly go where no man has gone before” is a Registered Trademark of Paramount
Pictures Corporation.

Published by:

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA
Phone: +1-617-542-5942

Fax: +1-617-542-2652

Email: gnu@gnu.org

URL: http://www.gnu.org/

ISBN 1-882114-28-0

Copyright (©) 1989, 1991, 1992, 1993, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2005, 2007, 2009, 2010 Free Software Foundation, Inc.

This is Edition 3 of GAWK: Effective AWK Programming: A User’s Guide for GNU Awk,
for the 3.1.8 (or later) version of the GNU implementation of AWK.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

a. “A GNU Manual”

b. “You have the freedom to copy and modify this GNU manual. Buying copies from the
FSF supports it in developing GNU and promoting software freedom.”

Cover art by Etienne Suvasa.

mailto:gnu@gnu.org
http://www.gnu.org/

To Miriam, for making me complete.
To Chana, for the joy you bring us.
To Rivka, for the exponential increase.
To Nachum, for the added dimension.

To Malka, for the new beginning.

Short Contents

Foreword 1
Preface . . .o 3
1 Getting Started with awk 11
2 Regular Expressions 24
3 Reading Input Files i i 36
4 Printing Output 58
5 EXPressions.......... e 74
6 Patterns, Actions, and Variables 95
T Arraysin awk 118
8 Functions............ i 129
9 Internationalization with gawk......................... 159
10 Advanced Features of gawk 167
11 Running awk and gawk............ ..., 175
12 A Library of awk Functions 183
13 Practical awk Programs 212
A The Evolution of the awk Language..................... 254
B Installing gawk 262
C Implementation Notes. 281
D Basic Programming Concepts 297
GloSSarY .« oo e 303
GNU General Public License. 313
GNU Free Documentation License 324

ii

GAWK: Effective AWK Programming

Table of Contents

Foreword 1
Preface 3
History of awk and gawk....... ..ot 3

A Rose by Any Other Name...........oiiii i 4
Using This Book 5
Typographical Conventions............ ..., 6
The GNU Project and This Book........... .. .o .. 7
How to Contribute 8
Acknowledgments 9

1 Getting Started with awk 11
1.1 How to Run awk Programs.............. o .. 11
1.1.1 One-Shot Throwaway awk Programs...................... 11

1.1.2 Running awk Without Input Files 12

1.1.3 Running Long Programscoiiiiiiii.. 12

1.1.4 Executable awk Programs 13

1.1.5 Comments in awk Programs............... 14

1.1.6 Shell-Quoting Issues. ..., 14
1.1.6.1 Quoting in MS-DOS Batch Files..................... 16

1.2 Data Files for the Examples................o oo 16
1.3 Some Simple Examples. ... 17
1.4 An Example with Two Rules.......... 19
1.5 A More Complex Example i 20
1.6 awk Statements Versus Lines............ ... 21
1.7 Other Features of awk......... ... i, 22
1.8 When to Use awk ... ooii e 22

2 Regular Expressions........................... 24
2.1 How to Use Regular Expressionscooiiiia.. 24
2.2 ESCaPe SEQUENCESttt ettt 25
2.3 Regular Expression Operators.............ccooiiiiiiiin.. 27
2.4 Using Character Lists 29
2.5 gawk-Specific Regexp Operators........ ... 31
2.6 Case Sensitivity in Matching i 32
2.7 How Much Text Matches?........ i i 33
2.8 Using Dynamic Regexps. 34

2.9 Where You Are Makes A Difference 35

3 Reading Input Files........................... 36
3.1 How Input Is Split into Records 36
3.2 Examining Fieldso i i 39
3.3 Nonconstant Field Numbers............ ... it 40
3.4 Changing the Contents of a Field.............................. 41
3.5 Specifying How Fields Are Separated.......................... 43

3.5.1 Using Regular Expressions to Separate Fields............. 44
3.5.2 Making Each Character a Separate Field 45
3.5.3 Setting FS from the Command Line 45
3.5.4 Field-Splitting Summary i 46
3.6 Reading Fixed-Width Data...........o oL 48
3.7 Multiple-Line Records......... ..o i 49
3.8 Explicit Input with getline, 52
3.8.1 Using getline with No Arguments....................... 52
3.8.2 Using getline into a Variable.................... 53
3.8.3 Using getline froma File.......... 53
3.8.4 Using getline into a Variable from a File................ 54
3.8.5 Using getline from a Pipe........... o i 54
3.8.6 Using getline into a Variable from a Pipe o6
3.8.7 Using getline from a Coprocessc...couvueuun... 56
3.8.8 Using getline into a Variable from a Coprocess.......... 56
3.8.9 Points to Remember About getline 56
3.8.10 Summary of getline Variants...................co.o.n o7
Printing Output 58
4.1 The print Statement il 58
4.2 FExamples of print Statements..........o il 58
4.3 Output Separatorsot 60
4.4 Controlling Numeric Output with print....................... 60
4.5 Using printf Statements for Fancier Printing 61
4.5.1 Introduction to the printf Statement.................... 61
4.5.2 Format-Control Letters......... o i 61
4.5.3 Modifiers for printf Formats, 63
4.5.4 Examples Using printfo, 65
4.6 Redirecting Output of print and printf...................... 66
4.7 Special File Names in gawk............ ... 69
4.7.1 Special Files for Standard Descriptors 69
4.7.2 Special Files for Process-Related Information 70
4.7.3 Special Files for Network Communications................ 71
4.7.4 Special File Name Caveatsoiiiiiiiio .. 71

4.8 Closing Input and Output Redirections........................ 71

iii

iv. GAWK: Effective AWK Programming

5 ExXpressions.....................iiiiiiii 74
5.1 Constant EXpressionsot 74
5.1.1 Numeric and String Constants................. 74
5.1.2 Octal and Hexadecimal Numbers......................... 74
5.1.3 Regular Expression Constants....................c..o.... 75
5.2 Using Regular Expression Constants........................... 75
5.3 Variables. 77
5.3.1 Using Variables in a Program............................. 7
5.3.2 Assigning Variables on the Command Line................ 7
5.4 Conversion of Strings and Numbers............................ 78
5.5 Arithmetic Operatorsot 80
5.6 String Concatenation............ ... 81
5.7 Assignment EXpressions...........c.oooiiiiiiiiiiiiiiii i 82
5.8 Increment and Decrement Operators 85
5.9 Trueand False in awk ..., 86
5.10 Variable Typing and Comparison Expressions 86
5.10.1 String Type Versus Numeric Type....................... 87
5.10.2 Comparison Operatorsccoviiiiiiiiiiinnnn... 88
5.11 Boolean EXpressionsc.ooooeiiiiiiiiiiiiiiiaanaea... 90
5.12 Conditional EXpressions.c.cooiiiiiiiieiiinan.. 91
5.13 Function Calls....... ... 92
5.14 Operator Precedence (How Operators Nest) 93
6 Patterns, Actions, and Variables............. 95
6.1 Pattern Elements i i 95
6.1.1 Regular Expressions as Patterns.......................... 95
6.1.2 FExpressions as Patterns L 95
6.1.3 Specifying Record Ranges with Patterns.................. 97
6.1.4 The BEGIN and END Special Patterns...................... 98
6.1.4.1 Startup and Cleanup Actions........................ 98
6.1.4.2 Input/Output from BEGIN and END Rules............ 99

6.1.5 The Empty Pattern.......o L. 99
6.2 Using Shell Variables in Programs.......................... ... 99
6.3 ACHIONS . .ottt 100
6.4 Control Statements in Actions 101
6.4.1 The if-else Statementc oo, 101
6.4.2 The while Statementccooiiiiiiineo.... 102
6.4.3 The do-while Statement 102
6.4.4 The for Statement........... ... 103
6.4.5 The switch Statement, 104
6.4.6 The break Statementccoiiiiiiiia.... 105
6.4.7 The continue Statement................................ 106
6.4.8 The next Statementooiiiiiiiiii, 107
6.4.9 Using gawk’s nextfile Statement....................... 108
6.4.10 The exit Statementcciiiiiiiiiiia. . 108
6.5 Built-in Variables....... 109
6.5.1 Built-in Variables That Control awk 109

6.5.2 Built-in Variables That Convey Information 112

6.5.3 Using ARGC and ARGVttt 115

7 Arraysinawk............ L. 118
7.1 Introduction t0 ATTaysuiviiiiiiii i 118
7.2 Referring to an Array Element 119
7.3 Assigning Array Elements........... 120
7.4 Basic Array Example ... 120
7.5 Scanning All Elements of an Array............. 121
7.6 The delete Statement............ 122
7.7 Using Numbers to Subscript Arrays.......................... 123
7.8 Using Uninitialized Variables as Subscripts................... 124
7.9 Multidimensional Arrays..... ..o 124
7.10 Scanning Multidimensional Arrays 126
7.11 Sorting Array Values and Indices with gawk................. 126

8 Functions, 129
8.1 Built-in Functions......... ... i 129

8.1.1 Calling Built-in Functions..................., 129
8.1.2 Numeric Functions............, 129
8.1.3 String-Manipulation Functions 131

8.1.3.1 More About ‘\’ and ‘%" with sub, gsub, and gensub

.. 139

8.1.4 Input/Output Functionsot 142
8.1.5 Using gawk’s Timestamp Functions................... ... 145
8.1.6 Bit-Manipulation Functions of gawk 149
8.1.7 Using gawk’s String-Translation Functions............... 151
8.2 User-Defined Functionso, 152
8.2.1 Function Definition Syntax............o L 152
8.2.2 Function Definition Examples 153
8.2.3 Calling User-Defined Functions.......................... 155
8.2.4 The return Statement 156
8.2.5 Functions and Their Effects on Variable Typing 157

9 Internationalization with gawk............... 159
9.1 Internationalization and Localization......................... 159
9.2 GNU gettextot 159
9.3 Internationalizing awk Programs................ 161
9.4 Translating awk Programs.............o, 162

9.4.1 Extracting Marked Strings L 163
9.4.2 Rearranging printf Arguments......................... 163
9.4.3 awk Portability Issues.......... ... i 164
9.5 A Simple Internationalization Example....................... 165

9.6 gawk Can Speak Your Language................coooiiiina... 166

vi GAWK: Effective AWK Programming
10 Advanced Features of gawk 167
10.1 Allowing Nondecimal Input Data............................ 167
10.2 Two-Way Communications with Another Process............ 168
10.3 Using gawk for Network Programming....................... 170
10.4 Using gawk with BSD Portals............... 171
10.5 Profiling Your awk Programs..............o . 171
11 Running awvk and gawk 175
11.1 Invoking awk.uueten e 175
11.2 Command-Line Options...........coooii i, 175
11.3 Other Command-Line Arguments 180
11.4 The AWKPATH Environment Variable......................... 181
11.5 gawk’s Exit Status......... o 182
11.6 Obsolete Options and/or Features........................... 182
11.7 Undocumented Options and Features........................ 182
11.8 Known Bugsin gawk.............oooiiiiiiiiiiiiiiii. 182
12 A Library of awk Functions................. 183
12.1 Naming Library Function Global Variables.................. 183
12.2 General Programming 184
12.2.1 Implementing nextfile as a Function.................. 185
12.2.2 Converting Strings To Numbers........................ 186
12.2.3 ASSEItIONS « oottt e 187
12.2.4 Rounding Numbers o i 189
12.2.5 The Cliff Random Number Generator 190
12.2.6 Translating Between Characters and Numbers.......... 190
12.2.7 Merging an Array into a String......................... 192
12.2.8 Managing the Time of Day............ 192
12.3 Data File Management............... i 194
12.3.1 Noting Data File Boundaries........................... 194
12.3.2 Rereading the Current File............. 195
12.3.3 Checking for Readable Data Files 196
12.3.4 Checking For Zero-length Files......................... 196
12.3.5 Treating Assignments as File Names.................... 197
12.4 Processing Command-Line Options 198
12.5 Reading the User Database it 203
12.6 Reading the Group Database.............. 207

vii

13 Practical awk Programs..................... 212
13.1 Running the Example Programs 212
13.2 Reinventing Wheels for Fun and Profit...................... 212

13.2.1 Cutting out Fields and Columns 212
13.2.2 Searching for Regular Expressions in Files.............. 217
13.2.3 Printing out User Information................ 221
13.2.4 Splitting a Large File into Pieces....................... 223
13.2.5 Duplicating Output into Multiple Files................. 225
13.2.6 Printing Nonduplicated Lines of Text................... 226
13.2.7 Counting Things. ... 230
13.3 A Grab Bag of awk Programs, 232
13.3.1 Finding Duplicated Words in a Document 232
13.3.2 An Alarm Clock Program................ 233
13.3.3 Transliterating Charactersoo.... 235
13.3.4 Printing Mailing Labels o ... 237
13.3.5 Generating Word-Usage Counts........................ 239
13.3.6 Removing Duplicates from Unsorted Text 241
13.3.7 Extracting Programs from Texinfo Source Files......... 241
13.3.8 A Simple Stream Editor................................ 245
13.3.9 An Easy Way to Use Library Functions 246
13.3.10 And Now For Something Completely Different......... 253

Appendix A The Evolution of the awk Language

... 254

A.1 Major Changes Between V7 and SVR3.1..................... 254
A.2 Changes Between SVR3.1 and SVR4......................... 255
A.3 Changes Between SVR4 and POSIX awk..................... 255
A.4 Extensions in the Bell Laboratories awk...................... 256
A.5 Extensions in gawk Not in POSIX awk....................... 257
A.6 Major Contributors to gawkooaL. 260
Appendix B Installing gawk 262
B.1 The gawk Distribution.......... ... i i 262
B.1.1 Getting the gawk Distribution.............. 262
B.1.2 Extracting the Distribution.............. 262
B.1.3 Contents of the gawk Distribution....................... 262
B.2 Compiling and Installing gawk on Unix 265
B.2.1 Compiling gawk for Unix..........., 265
B.2.2 Additional Configuration Options....................... 266
B.2.3 The Configuration Process............... 266
B.3 Installation on Other Operating Systems..................... 267
B.3.1 Installation on PC Operating Systems 267
B.3.1.1 Installing a Prepared Distribution for PC Systems.. 267
B.3.1.2 Compiling gawk for PC Operating Systems......... 268
B.3.1.3 Compiling gawk For Dynamic Libraries............. 269
B.3.1.4 Using gawk on PC Operating Systems.............. 270

B.3.1.5 Using gawk In The Cygwin Environment 271

viii GAWK: Effective AWK Programming

B.3.1.6 Using gawk In The MSYS Environment 272

B.3.2 How to Compile and Install gawk on VMS 272
B.3.2.1 Compiling gawk on VMS.................. 272
B.3.2.2 Installing gawk on VMS........ 273
B.3.2.3 Running gawk on VMS....... 273
B.3.2.4 Building and Using gawk on VMS POSIX 274
B.3.2.5 Some VMS Systems Have An Old Version of gawk.. 274

B.4 Unsupported Operating System Ports........................ 274
B.4.1 Installing gawk on the Atari ST............. 274
B.4.1.1 Compiling gawk on the Atari ST 275
B.4.1.2 Running gawk on the Atari ST.................. ... 275

B.4.2 Installing gawk on BeOS............ 276
B.4.3 Installing gawk on a Tandem............. 276
B.5 Reporting Problems and Bugso 277
B.6 Other Freely Available awk Implementations................. 278
Appendix C Implementation Notes.......... 281
C.1 Downward Compatibility and Debugging..................... 281
C.2 Making Additions to gawk.................oo it 281
C.2.1 Adding New Features..............ocooiiiiiiiii ... 281
C.2.2 Porting gawk to a New Operating System 283
C.3 Adding New Built-in Functions to gawk...................... 284
C.3.1 A Minimal Introduction to gawk Internals............... 284
C.3.2 Directory and File Operation Built-ins.................. 289
C.3.2.1 Using chdirand statccoviiiiiiina... 289
C.3.2.2 C Code for chdir and stat........................ 290
C.3.2.3 Integrating the Extensions......................... 293

C.4 Probable Future Extensionso, 294

Appendix D Basic Programming Concepts.. 297

D.1 What a Program Does.......... o i 297
D.2 Data Values in a Computer.................cooiiiiii. .. 298
D.3 Floating-Point Number Caveats 299
D.3.1 The String Value Can Lie..........., 299

D.3.2 Floating Point Numbers Are Not Abstract Numbers 300

D.3.3 Standards Versus Existing Practice 301
Glossary 303
GNU General Public License 313
GNU Free Documentation License............. 324
ADDENDUM: How to use this License for your documents 330

Foreword 1

Foreword

Arnold Robbins and T are good friends. We were introduced 11 years ago by circumstances—
and our favorite programming language, AWK. The circumstances started a couple of years
earlier. I was working at a new job and noticed an unplugged Unix computer sitting in the
corner. No one knew how to use it, and neither did I. However, a couple of days later it
was running, and I was root and the one-and-only user. That day, I began the transition
from statistician to Unix programmer.

On one of many trips to the library or bookstore in search of books on Unix, I found
the gray AWK book, a.k.a. Aho, Kernighan and Weinberger, The AWK Programming
Language, Addison-Wesley, 1988. AWK’s simple programming paradigm—find a pattern in
the input and then perform an action—often reduced complex or tedious data manipulations
to few lines of code. I was excited to try my hand at programming in AWK.

Alas, the awk on my computer was a limited version of the language described in the
AWK book. I discovered that my computer had “old awk” and the AWK book described
“new awk.” I learned that this was typical; the old version refused to step aside or relinquish
its name. If a system had a new awk, it was invariably called nawk, and few systems had it.
The best way to get a new awk was to f£tp the source code for gawk from prep.ai.mit.edu.
gawk was a version of new awk written by David Trueman and Arnold, and available under
the GNU General Public License.

(Incidentally, it’s no longer difficult to find a new awk. gawk ships with Linux, and you
can download binaries or source code for almost any system; my wife uses gawk on her VMS
box.)

My Unix system started out unplugged from the wall; it certainly was not plugged into
a network. So, oblivious to the existence of gawk and the Unix community in general, and
desiring a new awk, I wrote my own, called mawk. Before I was finished I knew about gawk,
but it was too late to stop, so I eventually posted to a comp.sources newsgroup.

A few days after my posting, I got a friendly email from Arnold introducing himself.
He suggested we share design and algorithms and attached a draft of the POSIX standard
so that I could update mawk to support language extensions added after publication of the
AWK book.

Frankly, if our roles had been reversed, I would not have been so open and we probably
would have never met. I'm glad we did meet. He is an AWK expert’s AWK expert and a
genuinely nice person. Arnold contributes significant amounts of his expertise and time to
the Free Software Foundation.

This book is the gawk reference manual, but at its core it is a book about AWK program-
ming that will appeal to a wide audience. It is a definitive reference to the AWK language
as defined by the 1987 Bell Labs release and codified in the 1992 POSIX Utilities standard.

On the other hand, the novice AWK programmer can study a wealth of practical pro-
grams that emphasize the power of AWK’s basic idioms: data driven control-flow, pattern
matching with regular expressions, and associative arrays. Those looking for something
new can try out gawk’s interface to network protocols via special ‘/inet’ files.

The programs in this book make clear that an AWK program is typically much smaller
and faster to develop than a counterpart written in C. Consequently, there is often a payoff
to prototype an algorithm or design in AWK to get it running quickly and expose problems

2 GAWK: Effective AWK Programming

early. Often, the interpreted performance is adequate and the AWK prototype becomes the
product.

The new pgawk (profiling gawk), produces program execution counts. I recently exper-
imented with an algorithm that for n lines of input, exhibited ~ Cn? performance, while
theory predicted ~ Cnlogn behavior. A few minutes poring over the ‘awkprof.out’ pro-
file pinpointed the problem to a single line of code. pgawk is a welcome addition to my
programmer’s toolbox.

Arnold has distilled over a decade of experience writing and using AWK programs, and
developing gawk, into this book. If you use AWK or want to learn how, then read this book.

Michael Brennan
Author of mawk

Preface 3

Preface

Several kinds of tasks occur repeatedly when working with text files. You might want to
extract certain lines and discard the rest. Or you may need to make changes wherever
certain patterns appear, but leave the rest of the file alone. Writing single-use programs for
these tasks in languages such as C, C++, or Pascal is time-consuming and inconvenient. Such
jobs are often easier with awk. The awk utility interprets a special-purpose programming
language that makes it easy to handle simple data-reformatting jobs.

The GNU implementation of awk is called gawk; it is fully compatible with the System
V Release 4 version of awk. gawk is also compatible with the POSIX specification of the
awk language. This means that all properly written awk programs should work with gawk.
Thus, we usually don’t distinguish between gawk and other awk implementations.

Using awk allows you to:
e Manage small, personal databases
e Generate reports
e Validate data
e Produce indexes and perform other document preparation tasks

e Experiment with algorithms that you can adapt later to other computer languages

In addition, gawk provides facilities that make it easy to:
e Extract bits and pieces of data for processing
e Sort data

e Perform simple network communications

This book teaches you about the awk language and how you can use it effectively. You
should already be familiar with basic system commands, such as cat and 1s,' as well as
basic shell facilities, such as input/output (I/O) redirection and pipes.

Implementations of the awk language are available for many different computing en-
vironments. This book, while describing the awk language in general, also describes the
particular implementation of awk called gawk (which stands for “GNU awk”). gawk runs
on a broad range of Unix systems, ranging from 80386 PC-based computers up through
large-scale systems, such as Crays. gawk has also been ported to Mac OS X, MS-DOS,
Microsoft Windows (all versions) and OS/2 PCs, Atari microcomputers, BeOS, Tandem
D20, and VMS.

History of awk and gawk

Recipe For A Programming Language

1 part egrep 1 part snobol
2 parts ed 3 parts C

Blend all parts well using lex and yacc. Document minimally and release.

! These commands are available on POSIX-compliant systems, as well as on traditional Unix-based sys-
tems. If you are using some other operating system, you still need to be familiar with the ideas of I/O
redirection and pipes.

4 GAWK: Effective AWK Programming

After eight years, add another part egrep and two more parts C. Document
very well and release.

The name awk comes from the initials of its designers: Alfred V. Aho, Peter J. Wein-
berger and Brian W. Kernighan. The original version of awk was written in 1977 at AT&T
Bell Laboratories. In 1985, a new version made the programming language more powerful,
introducing user-defined functions, multiple input streams, and computed regular expres-
sions. This new version became widely available with Unix System V Release 3.1 (SVR3.1).
The version in SVR4 added some new features and cleaned up the behavior in some of the
“dark corners” of the language. The specification for awk in the POSIX Command Lan-
guage and Utilities standard further clarified the language. Both the gawk designers and
the original Bell Laboratories awk designers provided feedback for the POSIX specification.

Paul Rubin wrote the GNU implementation, gawk, in 1986. Jay Fenlason completed
it, with advice from Richard Stallman. John Woods contributed parts of the code as
well. In 1988 and 1989, David Trueman, with help from me, thoroughly reworked gawk for
compatibility with the newer awk. Circa 1995, I became the primary maintainer. Current
development focuses on bug fixes, performance improvements, standards compliance, and
occasionally, new features.

In May of 1997, Jirgen Kahrs felt the need for network access from awk, and with a
little help from me, set about adding features to do this for gawk. At that time, he also
wrote the bulk of TCP/IP Internetworking with gawk (a separate document, available as
part of the gawk distribution). His code finally became part of the main gawk distribution
with gawk version 3.1.

See Section A.6 [Major Contributors to gawk], page 260, for a complete list of those who
made important contributions to gawk.

A Rose by Any Other Name

The awk language has evolved over the years. Full details are provided in Appendix A [The
Evolution of the awk Language|, page 254. The language described in this book is often
referred to as “new awk” (nawk).

Because of this, many systems have multiple versions of awk. Some systems have an awk
utility that implements the original version of the awk language and a nawk utility for the
new version. Others have an oawk version for the “old awk” language and plain awk for the
new one. Still others only have one version, which is usually the new one.?

All in all, this makes it difficult for you to know which version of awk you should run when
writing your programs. The best advice I can give here is to check your local documentation.
Look for awk, oawk, and nawk, as well as for gawk. It is likely that you already have some
version of new awk on your system, which is what you should use when running your
programs. (Of course, if you're reading this book, chances are good that you have gawk!)

Throughout this book, whenever we refer to a language feature that should be available
in any complete implementation of POSIX awk, we simply use the term awk. When referring
to a feature that is specific to the GNU implementation, we use the term gawk.

2 Often, these systems use gawk for their awk implementation!

Preface 5

Using This Book

The term awk refers to a particular program as well as to the language you use to tell this
program what to do. When we need to be careful, we call the language “the awk language,”
and the program “the awk utility.” This book explains both the awk language and how to
run the awk utility. The term awk program refers to a program written by you in the awk
programming language.

Primarily, this book explains the features of awk, as defined in the POSIX standard. It
does so in the context of the gawk implementation. While doing so, it also attempts to
describe important differences between gawk and other awk implementations.? Finally, any
gawk features that are not in the POSIX standard for awk are noted.

This book has the difficult task of being both a tutorial and a reference. If you are a
novice, feel free to skip over details that seem too complex. You should also ignore the
many cross-references; they are for the expert user and for the online Info version of the
document.

There are subsections labelled as Advanced Notes scattered throughout the book. They
add a more complete explanation of points that are relevant, but not likely to be of interest
on first reading. All appear in the index, under the heading “advanced features.”

Most of the time, the examples use complete awk programs. In some of the more advanced
sections, only the part of the awk program that illustrates the concept currently being
described is shown.

While this book is aimed principally at people who have not been exposed to awk, there
is a lot of information here that even the awk expert should find useful. In particular,
the description of POSIX awk and the example programs in Chapter 12 [A Library of awk
Functions], page 183, and in Chapter 13 [Practical awk Programs], page 212, should be of
interest.

Chapter 1 [Getting Started with awk], page 11, provides the essentials you need to know
to begin using awk.

Chapter 2 [Regular Expressions|, page 24, introduces regular expressions in general, and
in particular the flavors supported by POSIX awk and gawk.

Chapter 3 [Reading Input Files|, page 36, describes how awk reads your data. It intro-
duces the concepts of records and fields, as well as the getline command. I/O redirection
is first described here.

Chapter 4 [Printing Output], page 58, describes how awk programs can produce output
with print and printf.

Chapter 5 [Expressions|, page 74, describes expressions, which are the basic building
blocks for getting most things done in a program.

Chapter 6 [Patterns, Actions, and Variables], page 95, describes how to write patterns
for matching records, actions for doing something when a record is matched, and the built-in
variables awk and gawk use.

Chapter 7 [Arrays in awk|, page 118, covers awk’s one-and-only data structure: associa-

tive arrays. Deleting array elements and whole arrays is also described, as well as sorting
arrays in gawk.

3 All such differences appear in the index under the entry “differences in awk and gawk.”

6 GAWK: Effective AWK Programming

Chapter 8 [Functions|, page 129, describes the built-in functions awk and gawk provide,
as well as how to define your own functions.

Chapter 9 [Internationalization with gawk], page 159, describes special features in gawk
for translating program messages into different languages at runtime.

Chapter 10 [Advanced Features of gawk], page 167, describes a number of gawk-specific
advanced features. Of particular note are the abilities to have two-way communications
with another process, perform TCP/IP networking, and profile your awk programs.

Chapter 11 [Running awk and gawk]|, page 175, describes how to run gawk, the meaning
of its command-line options, and how it finds awk program source files.

Chapter 12 [A Library of awk Functions|, page 183, and Chapter 13 [Practical awk
Programs|, page 212, provide many sample awk programs. Reading them allows you to see
awk solving real problems.

Appendix A [The Evolution of the awk Language|, page 254, describes how the awk
language has evolved since first release to present. It also describes how gawk has acquired
features over time.

Appendix B [Installing gawk]|, page 262, describes how to get gawk, how to compile it
under Unix, and how to compile and use it on different non-Unix systems. It also describes
how to report bugs in gawk and where to get three other freely available implementations
of awk.

Appendix C [Implementation Notes|, page 281, describes how to disable gawk’s exten-
sions, as well as how to contribute new code to gawk, how to write extension libraries, and
some possible future directions for gawk development.

Appendix D [Basic Programming Concepts], page 297, provides some very cursory back-
ground material for those who are completely unfamiliar with computer programming. Also
centralized there is a discussion of some of the issues surrounding floating-point numbers.

The [Glossary], page 303, defines most, if not all, the significant terms used throughout
the book. If you find terms that you aren’t familiar with, try looking them up here.

[GNU General Public License], page 313, and [GNU Free Documentation License],
page 324, present the licenses that cover the gawk source code and this book, respectively.

Typographical Conventions

This book is written using Texinfo, the GNU documentation formatting language. A single
Texinfo source file is used to produce both the printed and online versions of the documen-
tation. Because of this, the typographical conventions are slightly different than in other
books you may have read.

Examples you would type at the command-line are preceded by the common shell pri-
mary and secondary prompts, ‘¢’ and ‘>’. Output from the command is preceded by the
glyph “ 7. This typically represents the command’s standard output. Error messages, and
other output on the command’s standard error, are preceded by the glyph “ 7. For
example:

$ echo hi on stdout
- hi on stdout
$ echo hello on stderr 1>&2

hello on stderr

Preface 7

In the text, command names appear in this font, while code segments appear in the
same font and quoted, ‘like this’. Some things are emphasized like this, and if a point
needs to be made strongly, it is done like this. The first occurrence of a new term is usually
its definition and appears in the same font as the previous occurrence of “definition” in this
sentence. Finally, file names are indicated like this: ‘/path/to/ourfile’.

Characters that you type at the keyboard look 1ike this. In particular, there are special
characters called “control characters.” These are characters that you type by holding down
both the CONTROL key and another key, at the same time. For example, a Ctrl-d is typed
by first pressing and holding the CONTROL key, next pressing the d key and finally releasing
both keys.

Dark Corners

Dark corners are basically fractal — no matter how much you illuminate, there’s
always a smaller but darker one.
Brian Kernighan

Until the POSIX standard (and The Gawk Manual), many features of awk were either
poorly documented or not documented at all. Descriptions of such features (often called
“dark corners”) are noted in this book with the picture of a flashlight in the margin, as
shown here. They also appear in the index under the heading “dark corner.”

As noted by the opening quote, though, any coverage of dark corners is, by definition,
something that is incomplete.

The GNU Project and This Book

The Free Software Foundation (FSF) is a nonprofit organization dedicated to the production
and distribution of freely distributable software. It was founded by Richard M. Stallman,
the author of the original Emacs editor. GNU Emacs is the most widely used version of
Emacs today.

The GNU* Project is an ongoing effort on the part of the Free Software Foundation
to create a complete, freely distributable, POSIX-compliant computing environment. The
FSF uses the “GNU General Public License” (GPL) to ensure that their software’s source
code is always available to the end user. A copy of the GPL is included in this book for
your reference (see [GNU General Public License], page 313). The GPL applies to the C
language source code for gawk. To find out more about the FSF and the GNU Project
online, see the GNU Project’s home page. This book may also be read from their web site.

A shell, an editor (Emacs), highly portable optimizing C, C++, and Objective-C com-
pilers, a symbolic debugger and dozens of large and small utilities (such as gawk), have all
been completed and are freely available. The GNU operating system kernel (the HURD),
has been released but is still in an early stage of development.

Until the GNU operating system is more fully developed, you should consider using
GNU/Linux, a freely distributable, Unix-like operating system for Intel 80386, DEC Alpha,
Sun SPARC, IBM S/390, and other systems.” There are many books on GNU/Linux. One
that is freely available is Linux Installation and Getting Started, by Matt Welsh. Many

4 GNU stands for “GNU’s not Unix.”
5 The terminology “GNU/Linux” is explained in the [Glossary], page 303.

A=

http://www.gnu.org
http://www.gnu.org/software/gawk/manual/

8 GAWK: Effective AWK Programming

GNU/Linux distributions are often available in computer stores or bundled on CD-ROMs
with books about Linux. (There are three other freely available, Unix-like operating systems
for 80386 and other systems: NetBSD, FreeBSD, and OpenBSD. All are based on the 4.4-
Lite Berkeley Software Distribution, and they use recent versions of gawk for their versions
of awk.)

The book you are reading is actually free—at least, the information in it is free to
anyone. The machine-readable source code for the book comes with gawk; anyone may take
this book to a copying machine and make as many copies as they like. (Take a moment to
check the Free Documentation License in [GNU Free Documentation License], page 324.)

Although you could just print it out yourself, bound books are much easier to read and
use. Furthermore, the proceeds from sales of this book go back to the FSF to help fund
development of more free software.

The book itself has gone through a number of previous editions. Paul Rubin wrote the
very first draft of The GAWK Manual; it was around 40 pages in size. Diane Close and
Richard Stallman improved it, yielding a version that was around 90 pages long and barely
described the original, “old” version of awk.

I started working with that version in the fall of 1988. As work on it progressed, the FSF
published several preliminary versions (numbered 0.x). In 1996, Edition 1.0 was released
with gawk 3.0.0. The FSF published the first two editions under the title The GNU Awk
User’s Guide.

This edition maintains the basic structure of Edition 1.0, but with significant additional
material, reflecting the host of new features in gawk version 3.1. Of particular note is
Section 7.11 [Sorting Array Values and Indices with gawk], page 126, as well as Section 8.1.6
[Bit-Manipulation Functions of gawk], page 149, Chapter 9 [Internationalization with gawk],
page 159, and also Chapter 10 [Advanced Features of gawk|, page 167, and Section C.3
[Adding New Built-in Functions to gawk], page 284.

GAWK: Effective AWK Programming will undoubtedly continue to evolve. An electronic
version comes with the gawk distribution from the FSF. If you find an error in this book,
please report it! See Section B.5 [Reporting Problems and Bugs|, page 277, for information
on submitting problem reports electronically, or write to me in care of the publisher.

How to Contribute

As the maintainer of GNU awk, I once thought that I would be able to manage a collection of
publicly available awk programs and I even solicited contributions. Making things available
on the Internet helps keep the gawk distribution down to manageable size.

The initial collection of material, such as it is, is still available at
ftp://ftp.freefriends.org/arnold/Awkstuff. In the hopes of doing some-
thing more broad, I acquired the awk.info domain.

However, I found that I could not dedicate enough time to managing contributed code:
the archive did not grow and the domain went unused for several years.

Fortunately, late in 2008, a volunteer took on the task of setting up an awk-related web
site—http://awk.info—and did a very nice job.

If you have written an interesting awk program, or have written a gawk extension that you
would like to share with the rest of the world, please see http://awk.info/7?contribute
for how to contribute it to the web site.

ftp://ftp.freefriends.org/arnold/Awkstuff
http://awk.info
http://awk.info/?contribute

Preface 9

Acknowledgments
The initial draft of The GAWK Manual had the following acknowledgments:

Many people need to be thanked for their assistance in producing this manual.
Jay Fenlason contributed many ideas and sample programs. Richard Mlynarik
and Robert Chassell gave helpful comments on drafts of this manual. The
paper A Supplemental Document for awk by John W. Pierce of the Chemistry
Department at UC San Diego, pinpointed several issues relevant both to awk
implementation and to this manual, that would otherwise have escaped us.

I would like to acknowledge Richard M. Stallman, for his vision of a better world and
for his courage in founding the FSF and starting the GNU Project.

The following people (in alphabetical order) provided helpful comments on various ver-
sions of this book, up to and including this edition. Rick Adams, Nelson H.F. Beebe, Karl
Berry, Dr. Michael Brennan, Rich Burridge, Claire Cloutier, Diane Close, Scott Deifik,
Christopher (“Topher”) Eliot, Jeffrey Friedl, Dr. Darrel Hankerson, Michal Jaegermann,
Dr. Richard J. LeBlanc, Michael Lijewski, Pat Rankin, Miriam Robbins, Mary Sheehan,
and Chuck Toporek.

Robert J. Chassell provided much valuable advice on the use of Texinfo. He also deserves
special thanks for convincing me not to title this book How To Gawk Politely. Karl Berry
helped significantly with the TEX part of Texinfo.

I would like to thank Marshall and Elaine Hartholz of Seattle and Dr. Bert and Rita
Schreiber of Detroit for large amounts of quiet vacation time in their homes, which allowed
me to make significant progress on this book and on gawk itself.

Phil Hughes of SSC contributed in a very important way by loaning me his laptop
GNU/Linux system, not once, but twice, which allowed me to do a lot of work while away
from home.

David Trueman deserves special credit; he has done a yeoman job of evolving gawk so
that it performs well and without bugs. Although he is no longer involved with gawk,
working with him on this project was a significant pleasure.

The intrepid members of the GNITS mailing list, and most notably Ulrich Drepper,
provided invaluable help and feedback for the design of the internationalization features.

Nelson Beebe, Antonio Colombo Scott Deifik, John H. DuBois III, Darrel Hankerson,
Michal Jaegermann, Jiirgen Kahrs, Dave Pitts, Stepan Kasal, Pat Rankin, Andrew Schorr,
Corinna Vinschen, Anders Wallin, and Eli Zaretskii (in alphabetical order) make up the
current gawk “crack portability team.” Without their hard work and help, gawk would not
be nearly the fine program it is today. It has been and continues to be a pleasure working
with this team of fine people.

David and I would like to thank Brian Kernighan of Bell Laboratories for invaluable
assistance during the testing and debugging of gawk, and for help in clarifying numerous
points about the language. We could not have done nearly as good a job on either gawk or
its documentation without his help.

Chuck Toporek, Mary Sheehan, and Claire Coutier of O’Reilly & Associates contributed
significant editorial help for this book for the 3.1 release of gawk.

I must thank my wonderful wife, Miriam, for her patience through the many versions of
this project, for her proofreading, and for sharing me with the computer. I would like to

10 GAWK: Effective AWK Programming

thank my parents for their love, and for the grace with which they raised and educated me.
Finally, I also must acknowledge my gratitude to G-d, for the many opportunities He has
sent my way, as well as for the gifts He has given me with which to take advantage of those
opportunities.

Arnold Robbins
Nof Ayalon
ISRAEL
February, 2010

Chapter 1: Getting Started with awk 11

1 Getting Started with awk

The basic function of awk is to search files for lines (or other units of text) that contain
certain patterns. When a line matches one of the patterns, awk performs specified actions
on that line. awk keeps processing input lines in this way until it reaches the end of the
input files.

Programs in awk are different from programs in most other languages, because awk
programs are data-driven; that is, you describe the data you want to work with and then
what to do when you find it. Most other languages are procedural; you have to describe, in
great detail, every step the program is to take. When working with procedural languages,
it is usually much harder to clearly describe the data your program will process. For this
reason, awk programs are often refreshingly easy to read and write.

When you run awk, you specify an awk program that tells awk what to do. The program
consists of a series of rules. (It may also contain function definitions, an advanced feature
that we will ignore for now. See Section 8.2 [User-Defined Functions], page 152.) Each rule
specifies one pattern to search for and one action to perform upon finding the pattern.

Syntactically, a rule consists of a pattern followed by an action. The action is enclosed
in curly braces to separate it from the pattern. Newlines usually separate rules. Therefore,
an awk program looks like this:

pattern { action }
pattern { action }

1.1 How to Run awk Programs
There are several ways to run an awk program. If the program is short, it is easiest to
include it in the command that runs awk, like this:
awk ’program’ input-filel input-file2
When the program is long, it is usually more convenient to put it in a file and run it
with a command like this:
awk -f program-file input-filel input-fileZ2

This section discusses both mechanisms, along with several variations of each.

1.1.1 One-Shot Throwaway awk Programs

Once you are familiar with awk, you will often type in simple programs the moment you want
to use them. Then you can write the program as the first argument of the awk command,
like this:

awk ’program’ input-filel input-file2
where program consists of a series of patterns and actions, as described earlier.
This command format instructs the shell, or command interpreter, to start awk and use
the program to process records in the input file(s). There are single quotes around program
so the shell won’t interpret any awk characters as special shell characters. The quotes also

cause the shell to treat all of program as a single argument for awk, and allow program to
be more than one line long.

12 GAWK: Effective AWK Programming

This format is also useful for running short or medium-sized awk programs from shell
scripts, because it avoids the need for a separate file for the awk program. A self-contained
shell script is more reliable because there are no other files to misplace.

Section 1.3 [Some Simple Examples|, page 17, later in this chapter, presents several
short, self-contained programs.

1.1.2 Running awk Without Input Files
You can also run awk without any input files. If you type the following command line:
awk ’program’

awk applies the program to the standard input, which usually means whatever you type
on the terminal. This continues until you indicate end-of-file by typing Ctrl-d. (On other
operating systems, the end-of-file character may be different. For example, on OS/2 and
MS-DOS, it is Ctrl-z.)

As an example, the following program prints a friendly piece of advice (from Douglas

Adams’s The Hitchhiker’s Guide to the Galaxy), to keep you from worrying about the
complexities of computer programming (BEGIN is a feature we haven’t discussed yet):

$ awk "BEGIN { print \"Don’t Panic!\" }"
-1 Don’t Panic!

This program does not read any input. The ‘\’ before each of the inner double quotes
is necessary because of the shell’s quoting rules—in particular because it mixes both single
quotes and double quotes.?

This next simple awk program emulates the cat utility; it copies whatever you type on
the keyboard to its standard output (why this works is explained shortly).

$ awk ’{ print }’

Now is the time for all good men

-1 Now is the time for all good men

to come to the aid of their country.

- to come to the aid of their country.
Four score and seven years ago,

- Four score and seven years ago,
What, me worry?

- What, me worry?

Ctri-d

1.1.3 Running Long Programs
Sometimes your awk programs can be very long. In this case, it is more convenient to put
the program into a separate file. In order to tell awk to use that file for its program, you
type:
awk -f source-file input-filel input-file2
The ‘-f’ instructs the awk utility to get the awk program from the file source-file. Any
file name can be used for source-file. For example, you could put the program:

1 Although we generally recommend the use of single quotes around the program text, double quotes are
needed here in order to put the single quote into the message.

Chapter 1: Getting Started with awk 13

BEGIN { print "Don’t Panic!" }
into the file ‘advice’. Then this command:
awk -f advice
does the same thing as this one:
awk "BEGIN { print \"Don’t Panic!\" }"

This was explained earlier (see Section 1.1.2 [Running awk Without Input Files|, page 12).
Note that you don’t usually need single quotes around the file name that you specify with
‘~f’, because most file names don’t contain any of the shell’s special characters. Notice that
in ‘advice’, the awk program did not have single quotes around it. The quotes are only
needed for programs that are provided on the awk command line.

If you want to identify your awk program files clearly as such, you can add the extension
‘.awk’ to the file name. This doesn’t affect the execution of the awk program but it does
make “housekeeping” easier.

1.1.4 Executable awk Programs

Once you have learned awk, you may want to write self-contained awk scripts, using the ‘#!’
script mechanism. You can do this on many Unix systems? as well as on the GNU system.
For example, you could update the file ‘advice’ to look like this:

#! /bin/awk -f

BEGIN { print "Don’t Panic!" }

After making this file executable (with the chmod utility), simply type ‘advice’ at the shell
and the system arranges to run awk® as if you had typed ‘awk -f advice’:

$ chmod +x advice
$ advice
- Don’t Panic!

(We assume you have the current directory in your shell’s search path variable (typically
$PATH). If not, you may need to type ‘./advice’ at the shell.)

Self-contained awk scripts are useful when you want to write a program that users can
invoke without their having to know that the program is written in awk.

Advanced Notes: Portability Issues with ‘#!’

Some systems limit the length of the interpreter name to 32 characters. Often, this can be
dealt with by using a symbolic link.

You should not put more than one argument on the ‘#!’ line after the path to awk. It
does not work. The operating system treats the rest of the line as a single argument and

2 The ‘#!” mechanism works on Linux systems, systems derived from the 4.4-Lite Berkeley Software Dis-
tribution, and most commercial Unix systems.

3 The line beginning with ‘#!’ lists the full file name of an interpreter to run and an optional initial

command-line argument to pass to that interpreter. The operating system then runs the interpreter

with the given argument and the full argument list of the executed program. The first argument in the

list is the full file name of the awk program. The rest of the argument list contains either options to awk,

or data files, or both.

14 GAWK: Effective AWK Programming

passes it to awk. Doing this leads to confusing behavior—most likely a usage diagnostic of
some sort from awk.

Finally, the value of ARGV[0] (see Section 6.5 [Built-in Variables], page 109) varies de-
pending upon your operating system. Some systems put ‘awk’ there, some put the full
pathname of awk (such as ‘/bin/awk’), and some put the name of your script (‘advice’).
Don’t rely on the value of ARGV[0] to provide your script name.

1.1.5 Comments in awk Programs

A comment is some text that is included in a program for the sake of human readers; it
is not really an executable part of the program. Comments can explain what the program
does and how it works. Nearly all programming languages have provisions for comments,
as programs are typically hard to understand without them.

In the awk language, a comment starts with the sharp sign character (‘#’) and continues
to the end of the line. The ‘4’ does not have to be the first character on the line. The awk
language ignores the rest of a line following a sharp sign. For example, we could have put
the following into ‘advice’:

This program prints a nice friendly message. It helps
keep novice users from being afraid of the computer.
BEGIN { print "Don’t Panic!" }

You can put comment lines into keyboard-composed throwaway awk programs, but this
usually isn’t very useful; the purpose of a comment is to help you or another person under-
stand the program when reading it at a later time.

Caution: As mentioned in Section 1.1.1 [One-Shot Throwaway awk Programs]|, page 11,
you can enclose small to medium programs in single quotes, in order to keep your shell
scripts self-contained. When doing so, don’t put an apostrophe (i.e., a single quote) into
a comment (or anywhere else in your program). The shell interprets the quote as the
closing quote for the entire program. As a result, usually the shell prints a message about
mismatched quotes, and if awk actually runs, it will probably print strange messages about
syntax errors. For example, look at the following:

$ awk ’{ print "hello" } # let’s be cute’
>

The shell sees that the first two quotes match, and that a new quoted object begins at
the end of the command line. It therefore prompts with the secondary prompt, waiting for
more input. With Unix awk, closing the quoted string produces this result:

$ awk ’{ print "hello" } # let’s be cute’
>)

awk: can’t open file be
source line number 1

Putting a backslash before the single quote in ‘let’s’ wouldn’t help, since backslashes
are not special inside single quotes. The next subsection describes the shell’s quoting rules.

1.1.6 Shell-Quoting Issues

For short to medium length awk programs, it is most convenient to enter the program on the
awk command line. This is best done by enclosing the entire program in single quotes. This

Chapter 1: Getting Started with awk 15

is true whether you are entering the program interactively at the shell prompt, or writing
it as part of a larger shell script:

awk ’program text’ input-filel input-file2 ...
Once you are working with the shell, it is helpful to have a basic knowledge of shell

quoting rules. The following rules apply only to POSIX-compliant, Bourne-style shells
(such as bash, the GNU Bourne-Again Shell). If you use csh, you're on your own.

e Quoted items can be concatenated with nonquoted items as well as with other quoted
items. The shell turns everything into one argument for the command.

e Preceding any single character with a backslash (‘\’) quotes that character. The shell
removes the backslash and passes the quoted character on to the command.

e Single quotes protect everything between the opening and closing quotes. The shell
does no interpretation of the quoted text, passing it on verbatim to the command. It is
impossible to embed a single quote inside single-quoted text. Refer back to Section 1.1.5
[Comments in awk Programs|, page 14, for an example of what happens if you try.

e Double quotes protect most things between the opening and closing quotes. The shell
does at least variable and command substitution on the quoted text. Different shells
may do additional kinds of processing on double-quoted text.

Since certain characters within double-quoted text are processed by the shell, they
must be escaped within the text. Of note are the characters ‘¢’, ‘7, ‘\’, and ‘", all
of which must be preceded by a backslash within double-quoted text if they are to be
passed on literally to the program. (The leading backslash is stripped first.) Thus, the
example seen previously in Section 1.1.2 [Running awk Without Input Files|, page 12,
is applicable:

$ awk "BEGIN { print \"Don’t Panic!\" }"

- Don’t Panic!

Note that the single quote is not special within double quotes.

e Null strings are removed when they occur as part of a non-null command-line argument,
while explicit non-null objects are kept. For example, to specify that the field separator
FS should be set to the null string, use:

awk -F "" ’program’ files # correct
Don’t use this:
awk -F"" ’program’ files # wrong!

In the second case, awk will attempt to use the text of the program as the value of FS,
and the first file name as the text of the program! This results in syntax errors at best,
and confusing behavior at worst.

Mixing single and double quotes is difficult. You have to resort to shell quoting tricks,
like this:

$ awk ’BEGIN { print "Here is a single quote <’"’"’>" }’
- Here is a single quote <’>

This program consists of three concatenated quoted strings. The first and the third are
single-quoted, the second is double-quoted.

This can be “simplified” to:

16 GAWK: Effective AWK Programming

$ awk ’BEGIN { print "Here is a single quote <’\’’>" 3}’
-| Here is a single quote <’>

Judge for yourself which of these two is the more readable.
Another option is to use double quotes, escaping the embedded, awk-level double quotes:
$ awk "BEGIN { print \"Here is a single quote <’>\" 1}"
-| Here is a single quote <’>
This option is also painful, because double quotes, backslashes, and dollar signs are very
common in awk programs.

A third option is to use the octal escape sequence equivalents for the single- and double-
quote characters, like so:
$ awk ’BEGIN { print "Here is a single quote <\47>" }’
-| Here is a single quote <’>
$ awk ’BEGIN { print "Here is a double quote <\42>" }’
- Here is a double quote <">

This works nicely, except that you should comment clearly what the escapes mean.
A fourth option is to use command-line variable assignment, like this:

$ awk -v sq="’" ’BEGIN { print "Here is a single quote <" sq ">" }’
-| Here is a single quote <’>

If you really need both single and double quotes in your awk program, it is probably best
to move it into a separate file, where the shell won’t be part of the picture, and you can say
what you mean.

1.1.6.1 Quoting in MS-DOS Batch Files

Although this book generally only worries about POSIX systems and the POSIX shell, the
following issue arises often enough for many users that it is worth addressing.

Systems providing an MS-DOS compatible “shell” use the double-quote character for
quoting, and make it difficult or impossible to include an escaped double-quote character
in a command-line script. The following example, courtesy of Jeroen Brink, shows how to
print all lines in a file surrounded by double quotes:

gawk "{ print \"\042\" $0 \"\042\" }" file

1.2 Data Files for the Examples

Many of the examples in this book take their input from two sample data files. The first,
‘BBS-1ist’, represents a list of computer bulletin board systems together with information
about those systems. The second data file, called ‘inventory-shipped’, contains informa-
tion about monthly shipments. In both files, each line is considered to be one record.

In the data file ‘BBS-1ist’, each record contains the name of a computer bulletin board,
its phone number, the board’s baud rate(s), and a code for the number of hours it is
operational. An ‘A’ in the last column means the board operates 24 hours a day. A ‘B’ in
the last column means the board only operates on evening and weekend hours. A ‘C’ means
the board operates only on weekends:

aardvark 555-5553 1200/300
alpo-net 555-3412 2400/1200/300 A

(o0]

Chapter 1: Getting Started with awk 17

barfly 555-7685 1200/300 A
bites 555-1675 2400/1200/300 A
camelot 555-0542 300 C
core 555-2912 1200/300 C
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sdace 555-3430 2400/1200/300 A
sabafoo 555-2127 1200/300 C

The data file ‘inventory-shipped’ represents information about shipments during the
year. Each record contains the month, the number of green crates shipped, the number of
red boxes shipped, the number of orange bags shipped, and the number of blue packages
shipped, respectively. There are 16 entries, covering the 12 months of last year and the first
four months of the current year.

Jan 13 25 15 115
Feb 15 32 24 226
Mar 15 24 34 228
Apr 31 52 63 420
May 16 34 29 208
Jun 31 42 75 492
Jul 24 34 67 436
Aug 15 34 47 316
Sep 13 55 37 277
Oct 29 54 68 525
Nov 20 87 82 577
Dec 17 35 61 401

Jan 21 36 64 620
Feb 26 58 80 652
Mar 24 75 70 495
Apr 21 70 74 514

1.3 Some Simple Examples

The following command runs a simple awk program that searches the input file ‘BBS-1list’
for the character string ‘foo’ (a grouping of characters is usually called a string; the term
string is based on similar usage in English, such as “a string of pearls,” or “a string of cars
in a train”):

awk ’/foo/ { print $0 }’ BBS-list
When lines containing ‘foo’ are found, they are printed because ‘print $0’ means print the

current line. (Just ‘print’ by itself means the same thing, so we could have written that
instead.)

You will notice that slashes (‘/’) surround the string ‘foo’ in the awk program. The
slashes indicate that ‘foo’ is the pattern to search for. This type of pattern is called a regular
expression, which is covered in more detail later (see Chapter 2 [Regular Expressions],

18 GAWK: Effective AWK Programming

page 24). The pattern is allowed to match parts of words. There are single quotes around
the awk program so that the shell won’t interpret any of it as special shell characters.

Here is what this program prints:
$ awk ’/foo/ { print $0 }’ BBS-list

4 fooey 555-1234 2400/1200/300 B
-4 foot 555-6699 1200/300 B
-4 macfoo 555-6480 1200/300 A
- sabafoo 555-2127 1200/300 C

In an awk rule, either the pattern or the action can be omitted, but not both. If the
pattern is omitted, then the action is performed for every input line. If the action is omitted,
the default action is to print all lines that match the pattern.

Thus, we could leave out the action (the print statement and the curly braces) in the
previous example and the result would be the same: all lines matching the pattern ‘foo’
are printed. By comparison, omitting the print statement but retaining the curly braces
makes an empty action that does nothing (i.e., no lines are printed).

Many practical awk programs are just a line or two. Following is a collection of useful,
short programs to get you started. Some of these programs contain constructs that haven’t
been covered yet. (The description of the program will give you a good idea of what is going
on, but please read the rest of the book to become an awk expert!) Most of the examples
use a data file named ‘data’. This is just a placeholder; if you use these programs yourself,
substitute your own file names for ‘data’. For future reference, note that there is often
more than one way to do things in awk. At some point, you may want to look back at these
examples and see if you can come up with different ways to do the same things shown here:

e Print the length of the longest input line:

awk ’{ if (length($0) > max) max = length($0) I}
END { print max }’ data

e Print every line that is longer than 80 characters:
awk ’length($0) > 80’ data

The sole rule has a relational expression as its pattern and it has no action—so the
default action, printing the record, is used.

e Print the length of the longest line in ‘data’:

expand data | awk ’{ if (x < length()) x = length() }
END { print "maximum line length is " x }’

The input is processed by the expand utility to change TABs into spaces, so the widths
compared are actually the right-margin columns.

e Print every line that has at least one field:
awk ’NF > 0’ data

This is an easy way to delete blank lines from a file (or rather, to create a new file
similar to the old file but from which the blank lines have been removed).

e Print seven random numbers from 0 to 100, inclusive:
awk ’BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) }’
e Print the total number of bytes used by files:

Chapter 1: Getting Started with awk 19

1ls -1 files | awk ’{ x += $5 }
END { print "total bytes: " x }’

e Print the total number of kilobytes used by files:

ls -1 files | awk ’{ x += $5 }

END { print "total K-bytes: " (x + 1023)/1024 }’

e Print a sorted list of the login names of all users:

awk -F: ’{ print $1 }’ /etc/passwd | sort
e Count the lines in a file:

awk ’END { print NR }’ data
e Print the even-numbered lines in the data file:

awk ’NR % 2 == 0’ data

If you use the expression ‘NR % 2 == 1’ instead, the program would print the odd-
numbered lines.

1.4 An Example with Two Rules

The awk utility reads the input files one line at a time. For each line, awk tries the patterns
of each of the rules. If several patterns match, then several actions are run in the order in
which they appear in the awk program. If no patterns match, then no actions are run.

After processing all the rules that match the line (and perhaps there are none), awk
reads the next line. (However, see Section 6.4.8 [The next Statement], page 107, and also
see Section 6.4.9 [Using gawk’s nextfile Statement|, page 108). This continues until the
program reaches the end of the file. For example, the following awk program contains two
rules:

/12/ { print $0 }
/21/ { print $0 }
The first rule has the string ‘12’ as the pattern and ‘print $0’ as the action. The second
rule has the string ‘21’ as the pattern and also has ‘print $0’ as the action. Each rule’s
action is enclosed in its own pair of braces.
This program prints every line that contains the string ‘12’ or the string ‘21°. If a line
contains both strings, it is printed twice, once by each rule.
This is what happens if we run this program on our two sample data files, ‘BBS-1ist’
and ‘inventory-shipped’:
$ awk ’/12/ { print $0 }

> /21/ { print $0 1}’ BBS-list inventory-shipped
- aardvark 555-5553 1200/300 B
- alpo-net 555-3412 2400/1200/300 A
- barfly 555-7685 1200/300 A
- bites 555-1675 2400/1200/300 A
-4 core 555-2912 1200/300 C
-+ fooey 555-1234 2400/1200/300 B
- foot 555-6699 1200/300 B
- macfoo 555-6480 1200/300 A
- sdace 555-3430 2400/1200/300 A

20 GAWK: Effective AWK Programming

- sabafoo 555-2127 1200/300 C
- sabafoo 555-2127 1200/300 C
- Jan 21 36 64 620

-4 Apr 21 70 74 514

Note how the line beginning with ‘sabafoo’ in ‘BBS-1ist’ was printed twice, once for each
rule.

1.5 A More Complex Example

Now that we’ve mastered some simple tasks, let’s look at what typical awk programs do.
This example shows how awk can be used to summarize, select, and rearrange the output of
another utility. It uses features that haven’t been covered yet, so don’t worry if you don’t
understand all the details:

1s -1 | awk ’$6 == "Nov" { sum += $5 }
END { print sum }’
This command prints the total number of bytes in all the files in the current directory
that were last modified in November (of any year).* The ‘ls -1’ part of this example is a

system command that gives you a listing of the files in a directory, including each file’s size
and the date the file was last modified. Its output looks like this:

-rw-r—--r-— 1 arnold user 1933 Nov 7 13:05 Makefile
-rw-r—--r—-— 1 arnold user 10809 Nov 7 13:03 awk.h
-rw-r--r—-— 1 arnold wuser 983 Apr 13 12:14 awk.tab.h
-rw-r--r-— 1 arnold user 31869 Jun 15 12:20 awkgram.y
-rw-r—--r-— 1 arnold user 22414 Nov 7 13:03 awkl.c
-rw-r—--r-— 1 arnold user 37455 Nov 7 13:03 awk2.c
-rw-r--r-- 1 arnold user 27511 Dec 9 13:07 awk3.c

-rw-r--r-- 1 arnold user 7989 Nov 7 13:03 awkd.c

The first field contains read-write permissions, the second field contains the number of links
to the file, and the third field identifies the owner of the file. The fourth field identifies the
group of the file. The fifth field contains the size of the file in bytes. The sixth, seventh, and
eighth fields contain the month, day, and time, respectively, that the file was last modified.
Finally, the ninth field contains the name of the file.®

The ‘$6 == "Nov"’ in our awk program is an expression that tests whether the sixth field
of the output from ‘1s -1’ matches the string ‘Nov’. Each time a line has the string ‘Nov’
for its sixth field, the action ‘sum += $5’ is performed. This adds the fifth field (the file’s
size) to the variable sum. As a result, when awk has finished reading all the input lines, sum
is the total of the sizes of the files whose lines matched the pattern. (This works because
awk variables are automatically initialized to zero.)

After the last line of output from 1s has been processed, the END rule executes and prints
the value of sum. In this example, the value of sum is 80600.

4 In the C shell (csh), you need to type a semicolon and then a backslash at the end of the first line; see
Section 1.6 [awk Statements Versus Lines], page 21, for an explanation. In a POSIX-compliant shell,
such as the Bourne shell or bash, you can type the example as shown. If the command ‘echo $path’
produces an empty output line, you are most likely using a POSIX-compliant shell. Otherwise, you are
probably using the C shell or a shell derived from it.

5 On some very old systems, you may need to use ‘ls -1g’ to get this output.

Chapter 1: Getting Started with awk 21

These more advanced awk techniques are covered in later sections (see Section 6.3 [Ac-
tions], page 100). Before you can move on to more advanced awk programming, you have to
know how awk interprets your input and displays your output. By manipulating fields and
using print statements, you can produce some very useful and impressive-looking reports.

1.6 awk Statements Versus Lines

Most often, each line in an awk program is a separate statement or separate rule, like this:

awk ’/12/ { print $0 }
/21/ { print $0 }’ BBS-list inventory-shipped

However, gawk ignores newlines after any of the following symbols and keywords:
5 { ? : |l && do else
A newline at any other point is considered the end of the statement.©

If you would like to split a single statement into two lines at a point where a newline
would terminate it, you can continue it by ending the first line with a backslash character
(‘\”). The backslash must be the final character on the line in order to be recognized as
a continuation character. A backslash is allowed anywhere in the statement, even in the
middle of a string or regular expression. For example:

awk ’/This regular expression is too long, so continue it\
on the next line/ { print $1 }’

We have generally not used backslash continuation in the sample programs in this book.
In gawk, there is no limit on the length of a line, so backslash continuation is never strictly
necessary; it just makes programs more readable. For this same reason, as well as for
clarity, we have kept most statements short in the sample programs presented throughout
the book. Backslash continuation is most useful when your awk program is in a separate
source file instead of entered from the command line. You should also note that many awk
implementations are more particular about where you may use backslash continuation. For
example, they may not allow you to split a string constant using backslash continuation.
Thus, for maximum portability of your awk programs, it is best not to split your lines in
the middle of a regular expression or a string.

Caution: Backslash continuation does not work as described with the C shell. Tt works for
awk programs in files and for one-shot programs, provided you are using a POSIX-compliant
shell, such as the Unix Bourne shell or bash. But the C shell behaves differently! There,
you must use two backslashes in a row, followed by a newline. Note also that when using
the C shell, every newline in your awk program must be escaped with a backslash. To
illustrate:

% awk ’BEGIN { \
print \\
? "hello, world" \
? ¥
- hello, world

6 The ‘2’ and *:’ referred to here is the three-operand conditional expression described in Section 5.12
[Conditional Expressions], page 91. Splitting lines after ‘?” and ‘:’ is a minor gawk extension; if ‘--posix’
is specified (see Section 11.2 [Command-Line Options|, page 175), then this extension is disabled.

22 GAWK: Effective AWK Programming

Here, the ‘%’ and ‘?” are the C shell’s primary and secondary prompts, analogous to the
standard shell’s ‘$” and >’.

Compare the previous example to how it is done with a POSIX-compliant shell:

$ awk ’BEGIN {
> print \
> "hello, world"
> P
-4 hello, world
awk is a line-oriented language. FEach rule’s action has to begin on the same line as

the pattern. To have the pattern and action on separate lines, you must use backslash
continuation; there is no other option.

Another thing to keep in mind is that backslash continuation and comments do not mix.
As soon as awk sees the ‘#’ that starts a comment, it ignores everything on the rest of the
line. For example:

$ gawk ’BEGIN { print "dont panic" # a friendly \

> BEGIN rule

> 3}

gawk: cmd. line:2: BEGIN rule
gawk: cmd. line:2: " parse error

In this case, it looks like the backslash would continue the comment onto the next line.
However, the backslash-newline combination is never even noticed because it is “hidden”
inside the comment. Thus, the BEGIN is noted as a syntax error.

When awk statements within one rule are short, you might want to put more than one of
them on a line. This is accomplished by separating the statements with a semicolon (*;’).
This also applies to the rules themselves. Thus, the program shown at the start of this
section could also be written this way:

/12/ { print $0 } ; /21/ { print $0 }

NOTE: The requirement that states that rules on the same line must be sepa-
rated with a semicolon was not in the original awk language; it was added for
consistency with the treatment of statements within an action.

1.7 Other Features of awk

The awk language provides a number of predefined, or built-in, variables that your programs
can use to get information from awk. There are other variables your program can set as
well to control how awk processes your data.

In addition, awk provides a number of built-in functions for doing common computational
and string-related operations. gawk provides built-in functions for working with timestamps,
performing bit manipulation, and for runtime string translation.

As we develop our presentation of the awk language, we introduce most of the vari-
ables and many of the functions. They are defined systematically in Section 6.5 [Built-in
Variables|, page 109, and Section 8.1 [Built-in Functions], page 129.

Chapter 1: Getting Started with awk 23

1.8 When to Use awk

Now that you've seen some of what awk can do, you might wonder how awk could be
useful for you. By using utility programs, advanced patterns, field separators, arithmetic
statements, and other selection criteria, you can produce much more complex output. The
awk language is very useful for producing reports from large amounts of raw data, such as
summarizing information from the output of other utility programs like 1s. (See Section 1.5
[A More Complex Example], page 20.)

Programs written with awk are usually much smaller than they would be in other lan-
guages. This makes awk programs easy to compose and use. Often, awk programs can
be quickly composed at your terminal, used once, and thrown away. Because awk pro-
grams are interpreted, you can avoid the (usually lengthy) compilation part of the typical
edit-compile-test-debug cycle of software development.

Complex programs have been written in awk, including a complete retargetable assem-
bler for eight-bit microprocessors (see [Glossary|, page 303, for more information), and a
microcode assembler for a special-purpose Prolog computer. More recently, gawk was used
for writing a a Wiki clone. While the original awk’s capabilities were strained by tasks of
such complexity, modern versions are more capable. Even the Bell Labs version of awk has
fewer predefined limits, and those that it has are much larger than they used to be.

If you find yourself writing awk scripts of more than, say, a few hundred lines, you might
consider using a different programming language. Emacs Lisp is a good choice if you need
sophisticated string or pattern matching capabilities. The shell is also good at string and
pattern matching; in addition, it allows powerful use of the system utilities. More conven-
tional languages, such as C, C++, and Java, offer better facilities for system programming
and for managing the complexity of large programs. Programs in these languages may
require more lines of source code than the equivalent awk programs, but they are easier to
maintain and usually run more efficiently.

http://www.awk-scripting.de/cgi-bin/wiki.cgi/yawk/

24 GAWK: Effective AWK Programming

2 Regular Expressions

A regular expression, or regexp, is a way of describing a set of strings. Because regular
expressions are such a fundamental part of awk programming, their format and use deserve
a separate chapter.

A regular expression enclosed in slashes (‘/’) is an awk pattern that matches every input
record whose text belongs to that set. The simplest regular expression is a sequence of
letters, numbers, or both. Such a regexp matches any string that contains that sequence.
Thus, the regexp ‘foo’ matches any string containing ‘foo’. Therefore, the pattern /foo/
matches any input record containing the three characters ‘foo’ anywhere in the record.
Other kinds of regexps let you specify more complicated classes of strings.

Initially, the examples in this chapter are simple. As we explain more about how regular
expressions work, we will present more complicated instances.

2.1 How to Use Regular Expressions

A regular expression can be used as a pattern by enclosing it in slashes. Then the regular
expression is tested against the entire text of each record. (Normally, it only needs to match
some part of the text in order to succeed.) For example, the following prints the second
field of each record that contains the string ‘foo’ anywhere in it:

$ awk ’/foo/ { print $2 }’ BBS-list
- 555-1234
-1 555-6699
-1 555-6480
- B55-2127

~ (tilde), ~ operator Regular expressions can also be used in matching expressions.

These expressions allow you to specify the string to match against; it need not be the
entire current input record. The two operators ‘=7 and ‘!~ perform regular expression
comparisons. Expressions using these operators can be used as patterns, or in if, while,
for, and do statements. (See Section 6.4 [Control Statements in Actions], page 101.) For
example:

exp ~ /regexp/
is true if the expression exp (taken as a string) matches regexp. The following example
matches, or selects, all input records with the uppercase letter ‘J’ somewhere in the first
field:

$ awk ’$1 ~ /J/’ inventory-shipped

-+ Jan 13 25 15 115

4 Jun 31 42 75 492

- Jul 24 34 67 436
4 Jan 21 36 64 620

So does this:
awk ’{ if ($1 ~ /J/) print }’ inventory-shipped

This next example is true if the expression exp (taken as a character string) does not
match regexp:

Chapter 2: Regular Expressions 25

exp !” /regexp/
The following example matches, or selects, all input records whose first field does not
contain the uppercase letter ‘J’:

$ awk ’$1 !~ /J/’ inventory-shipped
- Feb 15 32 24 226
4 Mar 15 24 34 228
4 Apr 31 52 63 420
4 May 16 34 29 208

When a regexp is enclosed in slashes, such as /foo/, we call it a regexp constant, much
like 5.27 is a numeric constant and "foo" is a string constant.

2.2 Escape Sequences

Some characters cannot be included literally in string constants ("foo") or regexp constants
(/foo/). Instead, they should be represented with escape sequences, which are character
sequences beginning with a backslash (‘\’). One use of an escape sequence is to include a
double-quote character in a string constant. Because a plain double quote ends the string,
you must use ‘\"’ to represent an actual double-quote character as a part of the string. For
example:

$ awk ’BEGIN { print "He said \"hi!\" to her." }’
- He said "hi!" to her.

The backslash character itself is another character that cannot be included normally;
you must write ‘\\’ to put one backslash in the string or regexp. Thus, the string whose
contents are the two characters ‘"’ and ‘\’ must be written "\"\\".

Backslash also represents unprintable characters such as TAB or newline. While there is
nothing to stop you from entering most unprintable characters directly in a string constant
or regexp constant, they may look ugly.

The following table lists all the escape sequences used in awk and what they represent.
Unless noted otherwise, all these escape sequences apply to both string constants and regexp
constants:

\\ A literal backslash, ‘\’.

\a The “alert” character, Ctrl-g, ASCII code 7 (BEL). (This usually makes some
sort of audible noise.)

\b Backspace, Ctrl-h, ASCII code 8 (BS).

\f Formfeed, Ctrl-1, ASCII code 12 (FF).

\n Newline, Ctrl-j, ASCII code 10 (LF).

\r Carriage return, Ctrl-m, ASCII code 13 (CR).

\t Horizontal TAB, Ctrl-i, ASCII code 9 (HT).

\v Vertical tab, Ctrl-k, ASCII code 11 (VT).

\nnn The octal value nnn, where nnn stands for 1 to 3 digits between ‘0’ and ‘7’. For

example, the code for the ASCII ESC (escape) character is ‘\033’.

26 GAWK: Effective AWK Programming

\xhh... The hexadecimal value hh, where hh stands for a sequence of hexadecimal digits
(‘0'—*9’, and either ‘A’—F’ or ‘a’~‘f’). Like the same construct in ISO C, the
escape sequence continues until the first nonhexadecimal digit is seen. However,
using more than two hexadecimal digits produces undefined results. (The ‘\x’
escape sequence is not allowed in POSIX awk.)

\/ A literal slash (necessary for regexp constants only). This expression is used
when you want to write a regexp constant that contains a slash. Because the
regexp is delimited by slashes, you need to escape the slash that is part of the
pattern, in order to tell awk to keep processing the rest of the regexp.

\" A literal double quote (necessary for string constants only). This expression is
used when you want to write a string constant that contains a double quote.
Because the string is delimited by double quotes, you need to escape the quote
that is part of the string, in order to tell awk to keep processing the rest of the
string.

In gawk, a number of additional two-character sequences that begin with a backslash have
special meaning in regexps. See Section 2.5 [gawk-Specific Regexp Operators], page 31.

In a regexp, a backslash before any character that is not in the previous list and not listed
in Section 2.5 [gawk-Specific Regexp Operators], page 31, means that the next character
should be taken literally, even if it would normally be a regexp operator. For example,
/a\+b/ matches the three characters ‘a+b’.

For complete portability, do not use a backslash before any character not shown in the
previous list.

To summarize:

e The escape sequences in the table above are always processed first, for both string
constants and regexp constants. This happens very early, as soon as awk reads your
program.

e gawk processes both regexp constants and dynamic regexps (see Section 2.8 [Using
Dynamic Regexps|, page 34), for the special operators listed in Section 2.5 [gawk-
Specific Regexp Operators], page 31.

e A backslash before any other character means to treat that character literally.

Advanced Notes: Backslash Before Regular Characters

If you place a backslash in a string constant before something that is not one of the characters
previously listed, POSIX awk purposely leaves what happens as undefined. There are two
choices:

Strip the backslash out
This is what Unix awk and gawk both do. For example, "a\qc" is the same
as "aqc". (Because this is such an easy bug both to introduce and to miss,
gawk warns you about it.) Consider ‘FS = "[\t]+\| [\t]+" to use vertical
bars surrounded by whitespace as the field separator. There should be two
backslashes in the string ‘FS = "[\tJ+\\| [\tI+"".)

Leave the backslash alone
Some other awk implementations do this. In such implementations, typing
"a\qgc" is the same as typing "a\\qc".

Chapter 2: Regular Expressions 27

Advanced Notes: Escape Sequences for Metacharacters

Suppose you use an octal or hexadecimal escape to represent a regexp metacharacter. (See
Section 2.3 [Regular Expression Operators|, page 27.) Does awk treat the character as a
literal character or as a regexp operator?

Historically, such characters were taken literally. = However, the POSIX standard in-
dicates that they should be treated as real metacharacters, which is what gawk does. In
compatibility mode (see Section 11.2 [Command-Line Options|, page 175), gawk treats the
characters represented by octal and hexadecimal escape sequences literally when used in
regexp constants. Thus, /a\52b/ is equivalent to /a*b/.

2.3 Regular Expression Operators

You can combine regular expressions with special characters, called regular expression op-
erators or metacharacters, to increase the power and versatility of regular expressions.

The escape sequences described earlier in Section 2.2 [Escape Sequences|, page 25, are
valid inside a regexp. They are introduced by a ‘\’ and are recognized and converted into
corresponding real characters as the very first step in processing regexps.

Here is a list of metacharacters. All characters that are not escape sequences and that
are not listed in the table stand for themselves:

\ This is used to suppress the special meaning of a character when matching. For
example, ‘\$’ matches the character ‘$’.

This matches the beginning of a string. For example, ‘“@chapter’ matches
‘Qchapter’ at the beginning of a string and can be used to identify chapter
beginnings in Texinfo source files. The ‘~’ is known as an anchor, because it
anchors the pattern to match only at the beginning of the string.

It is important to realize that ‘=’ does not match the beginning of a line em-
bedded in a string. The condition is not true in the following example:

if ("linel\nLINE 2" ~ /°L/)

$ This is similar to ‘~’, but it matches only at the end of a string. For example,
‘p$’ matches a record that ends with a ‘p’. The ‘$’ is an anchor and does not
match the end of a line embedded in a string. The condition in the following
example is not true:

if ("linel\nLINE 2" ~ /1$/)

This matches any single character, including the newline character. For ex-
ample, ‘.P’ matches any single character followed by a ‘P’ in a string. Using
concatenation, we can make a regular expression such as ‘U.A’, which matches
any three-character sequence that begins with ‘U’ and ends with ‘A’.

In strict POSIX mode (see Section 11.2 [Command-Line Options|, page 175),
.7 does not match the NUL character, which is a character with all bits equal
to zero. Otherwise, NUL is just another character. Other versions of awk may
not be able to match the NUL character.

A=

28 GAWK: Effective AWK Programming

[~ ...

{n}
{n,}
{n,m}

This is called a character list.! It matches any one of the characters that are
enclosed in the square brackets. For example, ‘[MVX]’ matches any one of the
characters ‘M’, ‘V’, or ‘X’ in a string. A full discussion of what can be inside
the square brackets of a character list is given in Section 2.4 [Using Character
Lists|, page 29.

This is a complemented character list. The first character after the ‘[’ must
be a ‘°’. It matches any characters except those in the square brackets. For
example, ‘[“awk]’ matches any character that is not an ‘a’, ‘w’, or ‘k’.

This is the alternation operator and it is used to specify alternatives. The
‘|’ has the lowest precedence of all the regular expression operators. For
example, ‘"P|[[:digit:]]" matches any string that matches either ‘"P’ or
‘[[:digit:]]’. This means it matches any string that starts with ‘P’ or contains
a digit.

The alternation applies to the largest possible regexps on either side.

Parentheses are used for grouping in regular expressions, as in arithmetic. They
can be used to concatenate regular expressions containing the alternation oper-
ator, ‘|’. For example, ‘@(samp|code) \{["}]+\}’ matches both ‘@code{foo}’
and ‘@samp{bar}’. (These are Texinfo formatting control sequences. The ‘+’ is
explained further on in this list.)

This symbol means that the preceding regular expression should be repeated
as many times as necessary to find a match. For example, ‘ph*’ applies the ‘*’
symbol to the preceding ‘h’ and looks for matches of one ‘p’ followed by any
number of ‘h’s. This also matches just ‘p’ if no ‘h’s are present.

The ‘*’ repeats the smallest possible preceding expression. (Use parentheses
if you want to repeat a larger expression.) It finds as many repetitions as
possible. For example, ‘awk ’/\(c[ad] [ad]*r x\)/ { print }’ sample’ prints
every record in ‘sample’ containing a string of the form ‘(car x)’, ‘(cdr x)’,
‘(cadr x)’, and so on. Notice the escaping of the parentheses by preceding
them with backslashes.

This symbol is similar to ‘*’, except that the preceding expression must be
matched at least once. This means that ‘wh+y’ would match ‘why’ and ‘whhy’,
but not ‘wy’, whereas ‘wh*y’ would match all three of these strings. The follow-
ing is a simpler way of writing the last ‘*’ example:

awk ’/\(clad]l+r x\)/ { print }’ sample

This symbol is similar to ‘*’, except that the preceding expression can be
matched either once or not at all. For example, ‘fe?d’ matches ‘fed’ and
‘fd’, but nothing else.

One or two numbers inside braces denote an interval expression. If there is one
number in the braces, the preceding regexp is repeated n times. If there are

1 In other literature, you may see a character list referred to as either a character set, a character class,
or a bracket expression.

Chapter 2: Regular Expressions 29

two numbers separated by a comma, the preceding regexp is repeated n to m
times. If there is one number followed by a comma, then the preceding regexp
is repeated at least n times:

wh{3}y Matches ‘whhhy’, but not ‘why’ or ‘whhhhy’.
wh{3,6}y Matches ‘whhhy’, ‘whhhhy’, or ‘whhhhhy’, only.
wh{2,}y Matches ‘whhy’ or ‘whhhy’, and so on.

Interval expressions were not traditionally available in awk. They were added
as part of the POSIX standard to make awk and egrep consistent with each
other.

However, because old programs may use ‘{’ and ‘}’ in regexp constants, by
default gawk does not match interval expressions in regexps. If either ‘--posix’
or ‘--re-interval’ are specified (see Section 11.2 [Command-Line Options],
page 175), then interval expressions are allowed in regexps.

For new programs that use ‘{’ and ‘}’ in regexp constants, it is good practice
to always escape them with a backslash. Then the regexp constants are valid
and work the way you want them to, using any version of awk.?

In regular expressions, the ‘*’, ‘+’, and ‘?’ operators, as well as the braces ‘{’ and ‘}’,
have the highest precedence, followed by concatenation, and finally by ‘|’. As in arithmetic,
parentheses can change how operators are grouped.

In POSIX awk and gawk, the ‘*’; ‘+’_ and ‘?’” operators stand for themselves when there
is nothing in the regexp that precedes them. For example, ‘//+/’ matches a literal plus sign.
However, many other versions of awk treat such a usage as a syntax error.

If gawk is in compatibility mode (see Section 11.2 [Command-Line Options]|, page 175),
POSIX character classes and interval expressions are not available in regular expressions.

2.4 Using Character Lists

Within a character list, a range expression consists of two characters separated by a hyphen.
It matches any single character that sorts between the two characters, using the locale’s
collating sequence and character set. For example, in the default C locale, ‘[a-dx-z]’
is equivalent to ‘[abcdxyz]’. Many locales sort characters in dictionary order, and in
these locales, ‘[a-dx-z] is typically not equivalent to ‘[abcdxyz]’; instead it might be
equivalent to ‘[aBbCcDdxXyYz]’, for example. To obtain the traditional interpretation of
bracket expressions, you can use the C locale by setting the LC_ALL environment variable
to the value ‘C’.

To include one of the characters ‘\’, ‘7, ‘=7, or ‘*” in a character list, put a ‘\’ in front
of it. For example:
[d\]1]

matches either ‘d’” or ‘]°.

This treatment of ‘\’ in character lists is compatible with other awk implementations and
is also mandated by POSIX. The regular expressions in awk are a superset of the POSIX

2 Use two backslashes if you’re using a string constant with a regexp operator or function.

30 GAWK: Effective AWK Programming

specification for Extended Regular Expressions (EREs). POSIX EREs are based on the
regular expressions accepted by the traditional egrep utility.

Character classes are a new feature introduced in the POSIX standard. A character
class is a special notation for describing lists of characters that have a specific attribute,
but the actual characters can vary from country to country and/or from character set to
character set. For example, the notion of what is an alphabetic character differs between
the United States and France.

A character class is only valid in a regexp inside the brackets of a character list. Char-
acter classes consist of ‘[:’, a keyword denoting the class, and :]1’. Table 2.1 lists the
character classes defined by the POSIX standard.

Class Meaning

[:alnum:] Alphanumeric characters.

[:alpha:] Alphabetic characters.

[:blank:] Space and TAB characters.

[:cntrl:] Control characters.

[:digit:] Numeric characters.

[:graph:] Characters that are both printable and visible. (A space is printable but
not visible, whereas an ‘a’ is both.)

[:lower:] Lowercase alphabetic characters.

[:print:] Printable characters (characters that are not control characters).

[:punct:] Punctuation characters (characters that are not letters, digits, control char-
acters, or space characters).

[:space:] Space characters (such as space, TAB, and formfeed, to name a few).

[:upper:] Uppercase alphabetic characters.

[:xdigit:] Characters that are hexadecimal digits.
Table 2.1: POSIX Character Classes

For example, before the POSIX standard, you had to write /[A-Za-z0-9]/ to match
alphanumeric characters. If your character set had other alphabetic characters in it, this
would not match them, and if your character set collated differently from ASCII, this might
not even match the ASCII alphanumeric characters. With the POSIX character classes, you
can write /[[:alnum:]]/ to match the alphabetic and numeric characters in your character
set.

Two additional special sequences can appear in character lists. These apply to non-
ASCII character sets, which can have single symbols (called collating elements) that are
represented with more than one character. They can also have several characters that are
equivalent for collating, or sorting, purposes. (For example, in French, a plain “e” and a
grave-accented “¢” are equivalent.) These sequences are:

Collating symbols
Multicharacter collating elements enclosed between ‘[.” and ‘.]’. For example,
if ‘ch’ is a collating element, then [[.ch.]] is a regexp that matches this
collating element, whereas [ch] is a regexp that matches either ‘¢’ or ‘h’.

Chapter 2: Regular Expressions 31

Equivalence classes
Locale-specific names for a list of characters that are equal. The name is en-
closed between ‘[=" and ‘=]’. For example, the name ‘e’ might be used to rep-

[P A SN}

resent all of “e,” “e,” and “é.” In this case, [[=e=]] is a regexp that matches

[ex)
any of ‘e’, ‘é’, or ‘&’

These features are very valuable in non-English-speaking locales.

Caution: The library functions that gawk uses for regular expression matching currently
recognize only POSIX character classes; they do not recognize collating symbols or equiva-
lence classes.

2.5 gawk-Specific Regexp Operators

GNU software that deals with regular expressions provides a number of additional regexp
operators. These operators are described in this section and are specific to gawk; they are
not available in other awk implementations. Most of the additional operators deal with
word matching. For our purposes, a word is a sequence of one or more letters, digits, or
underscores (‘_"):

\w Matches any word-constituent character—that is, it matches any letter, digit,
or underscore. Think of it as shorthand for [[:alnum:]_].

\W Matches any character that is not word-constituent. Think of it as shorthand
for [*[:alnum:]_].

\< Matches the empty string at the beginning of a word. For example, /\<away/
matches ‘away’ but not ‘stowaway’.

\> Matches the empty string at the end of a word. For example, /stow\>/ matches
‘stow’ but not ‘stowaway’.

\y Matches the empty string at either the beginning or the end of a word (i.e., the
word boundary). For example, ‘\yballs?\y’ matches either ‘ball’ or ‘balls’,
as a separate word.

\B Matches the empty string that occurs between two word-constituent characters.
For example, /\Brat\B/ matches ‘crate’ but it does not match ‘dirty rat’.
‘\B’ is essentially the opposite of ‘\y’.

There are two other operators that work on buffers. In Emacs, a buffer is, naturally, an
Emacs buffer. For other programs, gawk’s regexp library routines consider the entire string
to match as the buffer. The operators are:

\¢ Matches the empty string at the beginning of a buffer (string).
\’ Matches the empty string at the end of a buffer (string).

(e~

Because and ‘$’ always work in terms of the beginning and end of strings, these
operators don’t add any new capabilities for awk. They are provided for compatibility with
other GNU software.

In other GNU software, the word-boundary operator is ‘\b’. However, that conflicts
with the awk language’s definition of ‘\b’ as backspace, so gawk uses a different letter. An
alternative method would have been to require two backslashes in the GNU operators, but

32 GAWK: Effective AWK Programming

this was deemed too confusing. The current method of using ‘\y’ for the GNU ‘\b’ appears
to be the lesser of two evils.

The various command-line options (see Section 11.2 [Command-Line Options|, page 175)
control how gawk interprets characters in regexps:

No options
In the default case, gawk provides all the facilities of POSIX regexps and the
previously described GNU regexp operators. However, interval expressions are
not supported.

--posix Only POSIX regexps are supported; the GNU operators are not special (e.g.,
“\w’ matches a literal ‘w’). Interval expressions are allowed.

-—traditional
Traditional Unix awk regexps are matched. The GNU operators are not spe-
cial, interval expressions are not available, nor are the POSIX character classes
([[:alnum:1], etc.). Characters described by octal and hexadecimal escape
sequences are treated literally, even if they represent regexp metacharacters.
Also, gawk silently skips directories named on the command line.

--re-interval
Allow interval expressions in regexps, even if ‘--traditional’ has been
provided. (‘--posix’ automatically enables interval expressions, so
‘~-re-interval’ is redundant when ‘--posix’ is is used.)

2.6 Case Sensitivity in Matching

Case is normally significant in regular expressions, both when matching ordinary characters
(i.e., not metacharacters) and inside character sets. Thus, a ‘w’ in a regular expression
matches only a lowercase ‘w’ and not an uppercase ‘W’.

The simplest way to do a case-independent match is to use a character list—for example,
‘[Ww]’. However, this can be cumbersome if you need to use it often, and it can make the
regular expressions harder to read. There are two alternatives that you might prefer.

One way to perform a case-insensitive match at a particular point in the program is
to convert the data to a single case, using the tolower or toupper built-in string func-
tions (which we haven’t discussed yet; see Section 8.1.3 [String-Manipulation Functions],
page 131). For example:

tolower($1) ~ /foo/ { ... }

converts the first field to lowercase before matching against it. This works in any POSIX-
compliant awk.

Another method, specific to gawk, is to set the variable IGNORECASE to a nonzero value
(see Section 6.5 [Built-in Variables|, page 109). When IGNORECASE is not zero, all regexp and
string operations ignore case. Changing the value of IGNORECASE dynamically controls the
case-sensitivity of the program as it runs. Case is significant by default because IGNORECASE
(like most variables) is initialized to zero:

x = "aB"
if (x 7 /ab/) ... # this test will fail

Chapter 2: Regular Expressions 33

IGNORECASE = 1
if (x ~ /ab/) ... # now it will succeed

In general, you cannot use IGNORECASE to make certain rules case-insensitive and other
rules case-sensitive, because there is no straightforward way to set IGNORECASE just for the
pattern of a particular rule.® To do this, use either character lists or tolower. However,
one thing you can do with IGNORECASE only is dynamically turn case-sensitivity on or off
for all the rules at once.

IGNORECASE can be set on the command line or in a BEGIN rule (see Section 11.3 [Other
Command-Line Arguments|, page 180; also see Section 6.1.4.1 [Startup and Cleanup Ac-
tions|, page 98). Setting IGNORECASE from the command line is a way to make a program
case-insensitive without having to edit it.

Prior to gawk 3.0, the value of IGNORECASE affected regexp operations only. It did not
affect string comparison with ‘==", ‘1=’ and so on. Beginning with version 3.0, both regexp
and string comparison operations are also affected by IGNORECASE.

Beginning with gawk 3.0, the equivalences between upper- and lowercase characters are
based on the ISO-8859-1 (ISO Latin-1) character set. This character set is a superset of the
traditional 128 ASCII characters, which also provides a number of characters suitable for
use with European languages.

As of gawk 3.1.4, the case equivalences are fully locale-aware. They are based on the C
<ctype.h> facilities, such as isalpha() and toupper().

The value of IGNORECASE has no effect if gawk is in compatibility mode (see Section 11.2
[Command-Line Options|, page 175). Case is always significant in compatibility mode.

2.7 How Much Text Matches?

Consider the following:
echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’

This example uses the sub function (which we haven’t discussed yet; see Section 8.1.3
[String-Manipulation Functions|, page 131) to make a change to the input record. Here, the
regexp /a+/ indicates “one or more ‘a’ characters,” and the replacement text is ‘<A>’.

The input contains four ‘a’ characters. awk (and POSIX) regular expressions always
match the leftmost, longest sequence of input characters that can match. Thus, all four ‘a’
characters are replaced with ‘<A>’ in this example:

$ echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’
- <A>bcd

For simple match/no-match tests, this is not so important. But when doing text match-
ing and substitutions with the match, sub, gsub, and gensub functions, it is very important.
Understanding this principle is also important for regexp-based record and field splitting
(see Section 3.1 [How Input Is Split into Records], page 36, and also see Section 3.5 [Speci-
fying How Fields Are Separated|, page 43).

3 Experienced C and C++ programmers will note that it is possible, using something like ‘IGNORECASE =
1 && /fo0bAr/ { ... } and ‘IGNORECASE = 0 || /foobar/ { ... }’. However, this is somewhat obscure
and we don’t recommend it.

34 GAWK: Effective AWK Programming

2.8 Using Dynamic Regexps

The righthand side of a *~” or ‘!’ operator need not be a regexp constant (i.e., a string
of characters between slashes). It may be any expression. The expression is evaluated and
converted to a string if necessary; the contents of the string are used as the regexp. A
regexp that is computed in this way is called a dynamic regexp:

BEGIN { digits_regexp = "[[:digit:]]+" }

$0 ~ digits_regexp { print }
This sets digits_regexp to a regexp that describes one or more digits, and tests whether
the input record matches this regexp.

)

Caution: When using the ‘~” and ‘!~ operators, there is a difference between a regexp
constant enclosed in slashes and a string constant enclosed in double quotes. If you are going
to use a string constant, you have to understand that the string is, in essence, scanned twice:
the first time when awk reads your program, and the second time when it goes to match
the string on the lefthand side of the operator with the pattern on the right. This is true
of any string-valued expression (such as digits_regexp, shown previously), not just string
constants.

What difference does it make if the string is scanned twice? The answer has to do
with escape sequences, and particularly with backslashes. To get a backslash into a regular
expression inside a string, you have to type two backslashes.

For example, /*/ is a regexp constant for a literal ‘*’. Only one backslash is needed.
To do the same thing with a string, you have to type "*". The first backslash escapes
the second one so that the string actually contains the two characters ‘\’ and ‘*’.

Given that you can use both regexp and string constants to describe regular expressions,
which should you use? The answer is “regexp constants,” for several reasons:

e String constants are more complicated to write and more difficult to read. Using regexp
constants makes your programs less error-prone. Not understanding the difference
between the two kinds of constants is a common source of errors.

e [t is more efficient to use regexp constants. awk can note that you have supplied a
regexp and store it internally in a form that makes pattern matching more efficient.
When using a string constant, awk must first convert the string into this internal form
and then perform the pattern matching.

e Using regexp constants is better form; it shows clearly that you intend a regexp match.

Advanced Notes: Using \n in Character Lists of Dynamic Regexps

Some commercial versions of awk do not allow the newline character to be used inside a
character list for a dynamic regexp:

$ awk $0 ~ "[\t\nl"’
awk: newline in character class [

1.
source line number 1

context is
>>> <K<K

But a newline in a regexp constant works with no problem:

Chapter 2: Regular Expressions 35

$ awk ’$0 ~ /[\t\nl/’
here is a sample line

-| here is a sample line
Ctrl-d

gawk does not have this problem, and it isn’t likely to occur often in practice, but it’s
worth noting for future reference.

2.9 Where You Are Makes A Difference

Modern systems support the notion of locales: a way to tell the system about the local
character set and language. The current locale setting can affect the way regexp matching
works, often in surprising ways. In particular, many locales do case-insensitive matching,
even when you may have specified characters of only one particular case.

The following example uses the sub function, which does text replacement (see
Section 8.1.3 [String-Manipulation Functions|, page 131). Here, the intent is to remove
trailing uppercase characters:

$ echo somethingl234abc | gawk ’{ sub("[A-Z]x*$", ""); print }’
- somethingl1234

This output is unexpected, since the ‘abc’ at the end of ‘somethingl1234abc’ should not
normally match ‘[A-Z]*’. This result is due to the locale setting (and thus you may not
see it on your system). There are two fixes. The first is to use the POSIX character class
‘[[:upper:1]’, instead of ‘[A-Z]’. (This is preferred, since then your program will work
everywhere.) The second is to change the locale setting in the environment, before running
gawk, by using the shell statements:

LANG=C LC_ALL=C
export LANG LC_ALL

The setting ‘C’ forces gawk to behave in the traditional Unix manner, where case dis-
tinctions do matter. You may wish to put these statements into your shell startup file, e.g.,
‘$HOME/ .profile’.

Similar considerations apply to other ranges. For example, ‘["-/]" is perfectly valid in
ASCII, but is not valid in many Unicode locales, such as ‘en_US.UTF-8’. (In general, such
ranges should be avoided; either list the characters individually, or use a POSIX character
class such as ‘[[:punct:]]".)

For the normal case of ‘RS = "\n"’, the locale is largely irrelevant. For other single-
character record separators, using ‘LC_ALL=C’ will give you much better performance when
reading records. Otherwise, gawk has to make several function calls, per input character to
find the record terminator.

Finally, the locale affects the value of the decimal point character used when gawk parses
input data. This is discussed in detail in Section 5.4 [Conversion of Strings and Numbers],
page 78.

36 GAWK: Effective AWK Programming

3 Reading Input Files

In the typical awk program, all input is read either from the standard input (by default,
this is the keyboard, but often it is a pipe from another command) or from files whose
names you specify on the awk command line. If you specify input files, awk reads them
in order, processing all the data from one before going on to the next. The name of the
current input file can be found in the built-in variable FILENAME (see Section 6.5 [Built-in
Variables], page 109).

The input is read in units called records, and is processed by the rules of your program
one record at a time. By default, each record is one line. Each record is automatically split
into chunks called fields. This makes it more convenient for programs to work on the parts
of a record.

On rare occasions, you may need to use the getline command. The getline command
is valuable, both because it can do explicit input from any number of files, and because
the files used with it do not have to be named on the awk command line (see Section 3.8
[Explicit Input with getline], page 52).

3.1 How Input Is Split into Records

The awk utility divides the input for your awk program into records and fields. awk keeps
track of the number of records that have been read so far from the current input file. This
value is stored in a built-in variable called FNR. It is reset to zero when a new file is started.
Another built-in variable, NR, is the total number of input records read so far from all data
files. It starts at zero, but is never automatically reset to zero.

Records are separated by a character called the record separator. By default, the record
separator is the newline character. This is why records are, by default, single lines. A
different character can be used for the record separator by assigning the character to the
built-in variable RS.

Like any other variable, the value of RS can be changed in the awk program with the
assignment operator, ‘=" (see Section 5.7 [Assignment Expressions|, page 82). The new
record-separator character should be enclosed in quotation marks, which indicate a string
constant. Often the right time to do this is at the beginning of execution, before any input
is processed, so that the very first record is read with the proper separator. To do this, use
the special BEGIN pattern (see Section 6.1.4 [The BEGIN and END Special Patterns], page 98).
For example:

awk ’BEGIN { RS = "/" }
{ print $0 }’ BBS-list

changes the value of RS to "/", before reading any input. This is a string whose first
character is a slash; as a result, records are separated by slashes. Then the input file is
read, and the second rule in the awk program (the action with no pattern) prints each
record. Because each print statement adds a newline at the end of its output, this awk
program copies the input with each slash changed to a newline. Here are the results of
running the program on ‘BBS-list’:

$ awk ’BEGIN { RS = "/" }

> { print $0 }’ BBS-list

-1 aardvark 555-5553 1200

Chapter 3: Reading Input Files 37

-1 300 B

- alpo-net 555-3412 2400
- 1200

- 300 A

- barfly 555-7685 1200
-1 300 A

- Dbites 555-1675 2400
- 1200

- 300 A

- camelot 555-0542 300 C
- core 555-2912 1200
-1 300 C

- fooey 555-1234 2400
- 1200

- 300 B

- foot 555-6699 1200
-1 300 B

- macfoo 555-6480 1200
- 300 A

- sdace 555-3430 2400
- 1200

-1 300 A

- sabafoo 555-2127 1200
- 300 C

1

Note that the entry for the ‘camelot’ BBS is not split. In the original data file (see
Section 1.2 [Data Files for the Examples|, page 16), the line looks like this:

camelot 555-0542 300 C
It has one baud rate only, so there are no slashes in the record, unlike the others which have
two or more baud rates. In fact, this record is treated as part of the record for the ‘core’
BBS; the newline separating them in the output is the original newline in the data file, not
the one added by awk when it printed the record!

Another way to change the record separator is on the command line, using the variable-
assignment feature (see Section 11.3 [Other Command-Line Arguments], page 180):

awk ’{ print $0 }’ RS="/" BBS-list
This sets RS to ‘/’ before processing ‘BBS-1list’.

Using an unusual character such as ¢/’ for the record separator produces correct behavior
in the vast majority of cases. However, the following (extreme) pipeline prints a surprising
‘17

$ echo | awk ’BEGIN { RS = "a" } ; { print NF }’
41

There is one field, consisting of a newline. The value of the built-in variable NF is the

number of fields in the current record.

Reaching the end of an input file terminates the current input record, even if the last
character in the file is not the character in RS.

38 GAWK: Effective AWK Programming

The empty string "" (a string without any characters) has a special meaning as the value
of RS. It means that records are separated by one or more blank lines and nothing else. See
Section 3.7 [Multiple-Line Records|, page 49, for more details.

If you change the value of RS in the middle of an awk run, the new value is used to
delimit subsequent records, but the record currently being processed, as well as records
already processed, are not affected.

After the end of the record has been determined, gawk sets the variable RT to the text
in the input that matched RS. When using gawk, the value of RS is not limited to a
one-character string. It can be any regular expression (see Chapter 2 [Regular Expressions],
page 24). In general, each record ends at the next string that matches the regular expression;
the next record starts at the end of the matching string. This general rule is actually at
work in the usual case, where RS contains just a newline: a record ends at the beginning
of the next matching string (the next newline in the input), and the following record starts
just after the end of this string (at the first character of the following line). The newline,
because it matches RS, is not part of either record.

When RS is a single character, RT contains the same single character. However, when RS is
a regular expression, RT contains the actual input text that matched the regular expression.

The following example illustrates both of these features. It sets RS equal to a regular
expression that matches either a newline or a series of one or more uppercase letters with
optional leading and/or trailing whitespace:

$ echo record 1 AAAA record 2 BBBB record 3 |

> gawk ’BEGIN { RS = "\n|(*[[:upper:1]+ *)" }

> { print "Record =", $0, "and RT =", RT }’

4 Record = record 1 and RT = AAAA

- Record = record 2 and RT BBBB

- Record = record 3 and RT

_|
The final line of output has an extra blank line. This is because the value of RT is a newline,
and the print statement supplies its own terminating newline. See Section 13.3.8 [A Simple
Stream Editor], page 245, for a more useful example of RS as a regexp and RT.

If you set RS to a regular expression that allows optional trailing text, such as ‘RS =
"abc (XYZ) 7"’ it is possible, due to implementation constraints, that gawk may match the
leading part of the regular expression, but not the trailing part, particularly if the input
text that could match the trailing part is fairly long. gawk attempts to avoid this problem,
but currently, there’s no guarantee that this will never happen.

NOTE: Remember that in awk, the ‘~’ and ‘¢’ anchor metacharacters match the
beginning and end of a string, and not the beginning and end of a line. As a
result, something like ‘RS = "~ [[:upper:1]1"’ can only match at the beginning
of a file. This is because gawk views the input file as one long string that
happens to contain newline characters in it. It is thus best to avoid anchor
characters in the value of RS.

The use of RS as a regular expression and the RT variable are gawk extensions; they are
not available in compatibility mode (see Section 11.2 [Command-Line Options]|, page 175).
In compatibility mode, only the first character of the value of RS is used to determine the
end of the record.

Chapter 3: Reading Input Files 39

Advanced Notes: RS = "\0" Is Not Portable

There are times when you might want to treat an entire data file as a single record. The
only way to make this happen is to give RS a value that you know doesn’t occur in the input
file. This is hard to do in a general way, such that a program always works for arbitrary
input files.

You might think that for text files, the NUL character, which consists of a character with
all bits equal to zero, is a good value to use for RS in this case:

BEGIN { RS = "\0" } # whole file becomes one record?

gawk in fact accepts this, and uses the NUL character for the record separator. However,
this usage is not portable to other awk implementations.

All other awk implementations® store strings internally as C-style strings. C strings use
the NUL character as the string terminator. In effect, this means that ‘RS = "\0"’ is the
same as ‘RS = """,

The best way to treat a whole file as a single record is to simply read the file in, one
record at a time, concatenating each record onto the end of the previous ones.

3.2 Examining Fields

When awk reads an input record, the record is automatically parsed or separated by the
interpreter into chunks called fields. By default, fields are separated by whitespace, like
words in a line. Whitespace in awk means any string of one or more spaces, tabs, or new-
lines;? other characters, such as formfeed, vertical tab, etc. that are considered whitespace
by other languages, are not considered whitespace by awk.

The purpose of fields is to make it more convenient for you to refer to these pieces of the
record. You don’t have to use them—you can operate on the whole record if you want—but
fields are what make simple awk programs so powerful.

A dollar-sign (‘$’) is used to refer to a field in an awk program, followed by the number
of the field you want. Thus, $1 refers to the first field, $2 to the second, and so on. (Unlike
the Unix shells, the field numbers are not limited to single digits. $127 is the one hundred
twenty-seventh field in the record.) For example, suppose the following is a line of input:

This seems like a pretty nice example.
Here the first field, or $1, is ‘This’, the second field, or $2, is ‘seems’, and so on. Note that
the last field, $7, is ‘example.’. Because there is no space between the ‘e’ and the ‘.’, the
period is considered part of the seventh field.

NF is a built-in variable whose value is the number of fields in the current record. awk
automatically updates the value of NF each time it reads a record. No matter how many
fields there are, the last field in a record can be represented by $NF. So, $NF is the same as
$7, which is ‘example.’. If you try to reference a field beyond the last one (such as $8 when
the record has only seven fields), you get the empty string. (If used in a numeric operation,
you get zero.)

The use of $0, which looks like a reference to the “zero-th” field, is a special case: it
represents the whole input record when you are not interested in specific fields. Here are
some more examples:

1 At least that we know about.
2 In POSIX awk, newlines are not considered whitespace for separating fields.

40 GAWK: Effective AWK Programming

$ awk ’$1 ~ /foo/ { print $0 }’ BBS-list

-1 fooey 555-1234 2400/1200/300 B
- foot 555-6699 1200/300 B
- macfoo 555-6480 1200/300 A
- sabafoo 555-2127 1200/300 C

This example prints each record in the file ‘BBS-1ist’ whose first field contains the string
‘foo’. The operator ‘~’ is called a matching operator (see Section 2.1 [How to Use Regular
Expressions|, page 24); it tests whether a string (here, the field $1) matches a given regular
expression.
By contrast, the following example looks for ‘foo’ in the entire record and prints the

first field and the last field for each matching input record:

$ awk ’/foo/ { print $1, $NF }’> BBS-list

- fooey B
foot B
macfoo A
sabafoo C

R

3.3 Nonconstant Field Numbers

The number of a field does not need to be a constant. Any expression in the awk language
can be used after a ‘$’ to refer to a field. The value of the expression specifies the field
number. If the value is a string, rather than a number, it is converted to a number. Consider
this example:

awk ’{ print $NR }’
Recall that NR is the number of records read so far: one in the first record, two in the
second, etc. So this example prints the first field of the first record, the second field of the
second record, and so on. For the twentieth record, field number 20 is printed; most likely,
the record has fewer than 20 fields, so this prints a blank line. Here is another example of
using expressions as field numbers:

awk ’{ print $(2%2) 1}’ BBS-list

awk evaluates the expression ‘(2%2)’ and uses its value as the number of the field to

print. The ‘¥’ sign represents multiplication, so the expression ‘2*2’ evaluates to four. The
parentheses are used so that the multiplication is done before the ‘§’ operation; they are
necessary whenever there is a binary operator in the field-number expression. This example,
then, prints the hours of operation (the fourth field) for every line of the file ‘BBS-1ist’. (All
of the awk operators are listed, in order of decreasing precedence, in Section 5.14 [Operator
Precedence (How Operators Nest)], page 93.)

If the field number you compute is zero, you get the entire record. Thus, ‘$(2-2)’ has the
same value as $0. Negative field numbers are not allowed; trying to reference one usually
terminates the program. (The POSIX standard does not define what happens when you
reference a negative field number. gawk notices this and terminates your program. Other
awk implementations may behave differently.)

As mentioned in Section 3.2 [Examining Fields], page 39, awk stores the current record’s
number of fields in the built-in variable NF (also see Section 6.5 [Built-in Variables],
page 109). The expression $NF is not a special feature—it is the direct consequence of
evaluating NF and using its value as a field number.

Chapter 3: Reading Input Files 41

3.4 Changing the Contents of a Field

The contents of a field, as seen by awk, can be changed within an awk program; this changes
what awk perceives as the current input record. (The actual input is untouched; awk never
modifies the input file.) Consider the following example and its output:

$ awk ’{ nboxes = $3 ; $3 = $3 - 10

> print nboxes, $3 }’ inventory-shipped
-4 25 15

- 32 22

- 24 14

The program first saves the original value of field three in the variable nboxes. The ‘-’
sign represents subtraction, so this program reassigns field three, $3, as the original value
of field three minus ten: ‘$3 - 10’. (See Section 5.5 [Arithmetic Operators|, page 80.) Then
it prints the original and new values for field three. (Someone in the warehouse made a
consistent mistake while inventorying the red boxes.)

For this to work, the text in field $3 must make sense as a number; the string of characters
must be converted to a number for the computer to do arithmetic on it. The number
resulting from the subtraction is converted back to a string of characters that then becomes
field three. See Section 5.4 [Conversion of Strings and Numbers|, page 78.

When the value of a field is changed (as perceived by awk), the text of the input record
is recalculated to contain the new field where the old one was. In other words, $0 changes
to reflect the altered field. Thus, this program prints a copy of the input file, with 10
subtracted from the second field of each line:

$ awk °{ $2 = $2 - 10; print $0 }’ inventory-shipped
- Jan 3 25 15 115
- Feb 5 32 24 226
- Mar 5 24 34 228

It is also possible to also assign contents to fields that are out of range. For example:

$ awk '{ $6 = ($5 + $4 + $3 + $2)

> print $6 }’ inventory-shipped
- 168

- 297

- 301

We've just created $6, whose value is the sum of fields $2, $3, $4, and $5. The ‘+’ sign
represents addition. For the file ‘inventory-shipped’, $6 represents the total number of
parcels shipped for a particular month.

Creating a new field changes awk’s internal copy of the current input record, which is
the value of $0. Thus, if you do ‘print $0’ after adding a field, the record printed includes
the new field, with the appropriate number of field separators between it and the previously
existing fields.

This recomputation affects and is affected by NF (the number of fields; see Section 3.2
[Examining Fields], page 39). For example, the value of NF is set to the number of the

42 GAWK: Effective AWK Programming

highest field you create. The exact format of $0 is also affected by a feature that has
not been discussed yet: the output field separator, OFS, used to separate the fields (see
Section 4.3 [Output Separators|, page 60).

Note, however, that merely referencing an out-of-range field does not change the value
of either $0 or NF. Referencing an out-of-range field only produces an empty string. For
example:

if ($(NF+1) 1= "")
print "can’t happen"
else
print "everything is normal"

should print ‘everything is normal’, because NF+1 is certain to be out of range. (See
Section 6.4.1 [The if-else Statement|, page 101, for more information about awk’s if-
else statements. See Section 5.10 [Variable Typing and Comparison Expressions|, page 86,
for more information about the ‘!=" operator.)

It is important to note that making an assignment to an existing field changes the value

of $0 but does not change the value of NF, even when you assign the empty string to a field.
For example:

$ echoabcd | awk { OFS = ":"; $2 = "n

> print $0; print NF }’
- a::c:d

-1 4

The field is still there; it just has an empty value, denoted by the two colons between ‘a’
and ‘c’. This example shows what happens if you create a new field:

$ echoabcd | awk { OFS = ":"; $2 = ""; $6 = "new"
> print $0; print NF }’

-4 a::c:d::new

-1 6

The intervening field, $5, is created with an empty value (indicated by the second pair of
adjacent colons), and NF is updated with the value six.

Decrementing NF throws away the values of the fields after the new value of NF and
recomputes $0. Here is an example:

$ echoabcdef | avk ’{ print "NF =", NF;

> NF = 3; print $0 }’
- NF = 6

4 abec

Caution: Some versions of awk don’t rebuild $0 when NF is decremented. Caveat emptor.

Finally, there are times when it is convenient to force awk to rebuild the entire record,
using the current value of the fields and OFS. To do this, use the seemingly innocuous
assignment:

$1 = $1 # force record to be reconstituted
print $0 # or whatever else with $0
This forces awk rebuild the record. It does help to add a comment, as we’ve shown here.

There is a flip side to the relationship between $0 and the fields. Any assignment to
$0 causes the record to be reparsed into fields using the current value of FS. This also

Chapter 3: Reading Input Files 43

applies to any built-in function that updates $0, such as sub and gsub (see Section 8.1.3
[String-Manipulation Functions], page 131).

3.5 Specifying How Fields Are Separated

The field separator, which is either a single character or a regular expression, controls the
way awk splits an input record into fields. awk scans the input record for character sequences
that match the separator; the fields themselves are the text between the matches.

In the examples that follow, we use the bullet symbol (e) to represent spaces in the
output. If the field separator is ‘oo’, then the following line:
moo goo gai pan

is split into three fields: ‘m
the second and third fields.

The field separator is represented by the built-in variable FS. Shell programmers take
note: awk does not use the name IFS that is used by the POSIX-compliant shells (such as
the Unix Bourne shell, sh, or bash).

The value of FS can be changed in the awk program with the assignment operator, ‘=
(see Section 5.7 [Assignment Expressions|, page 82). Often the right time to do this is at the
beginning of execution before any input has been processed, so that the very first record is
read with the proper separator. To do this, use the special BEGIN pattern (see Section 6.1.4
[The BEGIN and END Special Patterns], page 98). For example, here we set the value of FS
to the string ",":

awk ’BEGIN { FS = "," } ; { print $2 }’
Given the input line:

John Q. Smith, 29 0Oak St., Walamazoo, MI 42139
this awk program extracts and prints the string ‘e29e0akeSt. .

, ‘eg’ and ‘egaiepan’. Note the leading spaces in the values of

i

Sometimes the input data contains separator characters that don’t separate fields the
way you thought they would. For instance, the person’s name in the example we just used
might have a title or suffix attached, such as:

John Q. Smith, LXIX, 29 Oak St., Walamazoo, MI 42139

The same program would extract ‘eLXIX’, instead of ‘e29e0akeSt.’. If you were expecting
the program to print the address, you would be surprised. The moral is to choose your data
layout and separator characters carefully to prevent such problems. (If the data is not in a
form that is easy to process, perhaps you can massage it first with a separate awk program.)

Fields are normally separated by whitespace sequences (spaces, TABs, and newlines),
not by single spaces. Two spaces in a row do not delimit an empty field. The default
value of the field separator FS is a string containing a single space, " ". If awk interpreted
this value in the usual way, each space character would separate fields, so two spaces in a
row would make an empty field between them. The reason this does not happen is that a
single space as the value of FS is a special case—it is taken to specify the default manner
of delimiting fields.

If FS is any other single character, such as ",", then each occurrence of that character
separates two fields. Two consecutive occurrences delimit an empty field. If the character
occurs at the beginning or the end of the line, that too delimits an empty field. The space
character is the only single character that does not follow these rules.

—(x

44 GAWK: Effective AWK Programming

3.5.1 Using Regular Expressions to Separate Fields

The previous subsection discussed the use of single characters or simple strings as the value
of FS. More generally, the value of FS may be a string containing any regular expression. In
this case, each match in the record for the regular expression separates fields. For example,
the assignment:

FS =", \t"

makes every area of an input line that consists of a comma followed by a space and a TAB
into a field separator.

For a less trivial example of a regular expression, try using single spaces to separate
fields the way single commas are used. FS can be set to "[1" (left bracket, space, right
bracket). This regular expression matches a single space and nothing else (see Chapter 2
[Regular Expressions|, page 24).

There is an important difference between the two cases of ‘FS = " "’ (a single space) and
‘FS = "[\t\n]+" (a regular expression matching one or more spaces, TABs, or newlines).
For both values of FS, fields are separated by runs (multiple adjacent occurrences) of spaces,
TABs, and/or newlines. However, when the value of FS is " ", awk first strips leading and
trailing whitespace from the record and then decides where the fields are. For example, the
following pipeline prints ‘b’:

$ echo > abcd’ | awk ’{ print $2 }’
4 b

However, this pipeline prints ‘a’ (note the extra spaces around each letter):

$ echo > a b ¢ d°’ | awk ’BEGIN { FS = "[\t\n]+" }
> { print $2 }°
- a

In this case, the first field is null or empty.

The stripping of leading and trailing whitespace also comes into play whenever $0 is
recomputed. For instance, study this pipeline:

$ echo’ abcd | awk ’{ print; $2 = $2; print }’
. abcd
<+ abcd

The first print statement prints the record as it was read, with leading whitespace intact.
The assignment to $2 rebuilds $0 by concatenating $1 through $NF together, separated by
the value of OFS. Because the leading whitespace was ignored when finding $1, it is not
part of the new $0. Finally, the last print statement prints the new $0.

There is an additional subtlety to be aware of when using regular exressions for field
splitting. It is not well-specified in the POSIX standard, or anywhere else, what ‘~” means
when splitting fields. Does the ‘~’ match only at the beginning of the entire record? Or
is each field separator a new string? It turns out that different awk versions answer this
question differently, and you should not rely on any specific behavior in your programs.

As a point of information, the Bell Labs awk allows ‘~’ to match only at the beginning
of the record. Versions of gawk after 3.1.6 also work this way. For example:

$ echo ’xxAA xxBxx C’ |

> nawk -F *(Cx+)|(+)? ’{ for (i = 1; i <= NF; i++) printf "-->Ys<--\n", $i }’

Chapter 3: Reading Input Files 45

——><—-
——>AA<--
—=>XXBxx<--
-=>C<--

e

$ echo ’xxAA =xxBxx C’ |
> gawk-3.1.6 -F *(CCx+) | (+)’ ’{ for (i = 1; i <= NF; i++) printf "-->Ys<--\n", $i }’

- —=><-=

- -=>AA<-—-
-4 —=><--

- —=>Bxx<--
H -->C<--

As mentioned, gawk now behaves like the Bell Labs awk.

3.5.2 Making Each Character a Separate Field

There are times when you may want to examine each character of a record separately. This
can be done in gawk by simply assigning the null string ("") to FS. In this case, each
individual character in the record becomes a separate field. For example:

$ echo a b | gawk ’BEGIN { FS = "" }

> {

> for (i =1; i <=NF; i =1+ 1)
> print "Field", i, "is", $i
> »

-4 Field 1 is a
-4 Field 2 is
- Field 3 is b

Traditionally, the behavior of FS equal to "" was not defined. In this case, most versions
of Unix awk simply treat the entire record as only having one field. In compatibility mode =
(see Section 11.2 [Command-Line Options|, page 175), if FS is the null string, then gawk
also behaves this way.

3.5.3 Setting FS from the Command Line

FS can be set on the command line. Use the ‘~F’ option to do so. For example:

awk -F, ’program’ input-files
sets FS to the ¢,” character. Notice that the option uses an uppercase ‘F’ instead of a
lowercase ‘f’. The latter option (‘-f’) specifies a file containing an awk program. Case is
significant in command-line options: the ‘-F’ and ‘-f’ options have nothing to do with each
other. You can use both options at the same time to set the FS variable and get an awk
program from a file.

The value used for the argument to ‘-F’ is processed in exactly the same way as assign-
ments to the built-in variable FS. Any special characters in the field separator must be
escaped appropriately. For example, to use a ‘\’ as the field separator on the command
line, you would have to type:

same as FS = "\\"
awk -F\\\\ ’...’> files ...

46 GAWK: Effective AWK Programming

Because ‘\’ is used for quoting in the shell, awk sees ‘-F\\’. Then awk processes the ‘\\’ for
escape characters (see Section 2.2 [Escape Sequences|, page 25), finally yielding a single ‘\’
to use for the field separator.

As a special case, in compatibility mode (see Section 11.2 [Command-Line Options],
page 175), if the argument to ‘~F’ is ‘t’, then FS is set to the TAB character. If you type
‘~F\t’ at the shell, without any quotes, the ‘\’ gets deleted, so awk figures that you really
want your fields to be separated with TABs and not ‘t’s. Use ‘-v FS="t"’ or ‘-F"[t]"’ on
the command line if you really do want to separate your fields with ‘t’s.

For example, let’s use an awk program file called ‘baud.awk’ that contains the pattern
/300/ and the action ‘print $1:
/300/ { print $1 }
Let’s also set FS to be the ‘=’ character and run the program on the file ‘BBS-1ist’. The

following command prints a list of the names of the bulletin boards that operate at 300
baud and the first three digits of their phone numbers:

$ awk -F- -f baud.awk BBS-list

- aardvark 555

< alpo

- barfly 555

-1 bites 555

| camelot 555

-1 core 555

- fooey 555

- foot 555

- macfoo 555

-1 sdace 555

-1 sabafoo 555

Note the second line of output. The second line in the original file looked like this:

alpo-net 555-3412 2400/1200/300 A

The ‘-’ as part of the system’s name was used as the field separator, instead of the ‘-’
in the phone number that was originally intended. This demonstrates why you have to be
careful in choosing your field and record separators.

Perhaps the most common use of a single character as the field separator occurs when
processing the Unix system password file. On many Unix systems, each user has a separate
entry in the system password file, one line per user. The information in these lines is
separated by colons. The first field is the user’s login name and the second is the user’s
(encrypted or shadow) password. A password file entry might look like this:

arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/bash

The following program searches the system password file and prints the entries for users
who have no password:

awk -F: ’$2 == ""> /etc/passwd

3.5.4 Field-Splitting Summary

It is important to remember that when you assign a string constant as the value of FS,
it undergoes normal awk string processing. For example, with Unix awk and gawk, the

Chapter 3: Reading Input Files 47

assignment ‘FS = "\.."’ assigns the character string ".." to FS (the backslash is stripped).
This creates a regexp meaning “fields are separated by occurrences of any two characters.”
If instead you want fields to be separated by a literal period followed by any single character,
use ‘FS = "\\.."".

The following table summarizes how fields are split, based on the value of FS (‘==" means
“is equal t0”):

FS=="" Fields are separated by runs of whitespace. Leading and trailing whitespace
are ignored. This is the default.

FS == any other single character
Fields are separated by each occurrence of the character. Multiple successive
occurrences delimit empty fields, as do leading and trailing occurrences. The
character can even be a regexp metacharacter; it does not need to be escaped.

FS == regexp
Fields are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty fields.

FS =="" Fach individual character in the record becomes a separate field. (This is a
gawk extension; it is not specified by the POSIX standard.)

Advanced Notes: Changing FS Does Not Affect the Fields

According to the POSIX standard, awk is supposed to behave as if each record is split into
fields at the time it is read. In particular, this means that if you change the value of FS
after a record is read, the value of the fields (i.e., how they were split) should reflect the old
value of FS, not the new one.

However, many implementations of awk do not work this way. Instead, they defer split-
ting the fields until a field is actually referenced. The fields are split using the current
value of FS! This behavior can be difficult to diagnose. The following example illustrates
the difference between the two methods. (The sed® command prints just the first line of
‘/etc/passwd’.)

sed 1q /etc/passwd | awk ’{ FS = ":" ; print $1 }’

which usually prints:
root

on an incorrect implementation of awk, while gawk prints something like:
root:nSijP1PhZZwgE:0:0:Root:/:

Advanced Notes: FS and IGNORECASE

The IGNORECASE variable (see Section 6.5.1 [Built-in Variables That Control awk], page 109)
affects field splitting only when the value of FS is